Daugavet centers and direct sums of Banach spaces
Open Mathematics (2010)
- Volume: 8, Issue: 2, page 346-356
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topTetiana Bosenko. "Daugavet centers and direct sums of Banach spaces." Open Mathematics 8.2 (2010): 346-356. <http://eudml.org/doc/268970>.
@article{TetianaBosenko2010,
abstract = {A linear continuous nonzero operator G: X → Y is a Daugavet center if every rank-1 operator T: X → Y satisfies ||G + T|| = ||G|| + ||T||. We study the case when either X or Y is a sum X 1⊕F X 2 of two Banach spaces X 1 and X 2 by some two-dimensional Banach space F. We completely describe the class of those F such that for some spaces X 1 and X 2 there exists a Daugavet center acting from X 1⊕F X 2, and the class of those F such that for some pair of spaces X 1 and X 2 there is a Daugavet center acting into X 1⊕F X 2. We also present several examples of such Daugavet centers.},
author = {Tetiana Bosenko},
journal = {Open Mathematics},
keywords = {Daugavet center; Daugavet property; Direct sum of Banach spaces; direct sum of Banach spaces},
language = {eng},
number = {2},
pages = {346-356},
title = {Daugavet centers and direct sums of Banach spaces},
url = {http://eudml.org/doc/268970},
volume = {8},
year = {2010},
}
TY - JOUR
AU - Tetiana Bosenko
TI - Daugavet centers and direct sums of Banach spaces
JO - Open Mathematics
PY - 2010
VL - 8
IS - 2
SP - 346
EP - 356
AB - A linear continuous nonzero operator G: X → Y is a Daugavet center if every rank-1 operator T: X → Y satisfies ||G + T|| = ||G|| + ||T||. We study the case when either X or Y is a sum X 1⊕F X 2 of two Banach spaces X 1 and X 2 by some two-dimensional Banach space F. We completely describe the class of those F such that for some spaces X 1 and X 2 there exists a Daugavet center acting from X 1⊕F X 2, and the class of those F such that for some pair of spaces X 1 and X 2 there is a Daugavet center acting into X 1⊕F X 2. We also present several examples of such Daugavet centers.
LA - eng
KW - Daugavet center; Daugavet property; Direct sum of Banach spaces; direct sum of Banach spaces
UR - http://eudml.org/doc/268970
ER -
References
top- [1] Bilik D., Kadets V., Shvidkoy R., Werner D., Narrow operators and the Daugavet property for ultraproducts, Positivity, 2005, 9, 45–62 http://dx.doi.org/10.1007/s11117-003-9339-9 Zbl1099.46009
- [2] Bourgain J., Rosenthal H.P., Martingales valued in certain subspaces of L 1, Israel J. Math., 1980, 37, 54–75 http://dx.doi.org/10.1007/BF02762868 Zbl0445.46015
- [3] Bosenko T., Kadets V., Daugavet centers, Zh. Mat. Fiz. Anal. Geom., preprint available at http://arxiv.org/abs/0910.4503
- [4] Daugavet I.K., On a property of completely continuous operators in the space C, Uspekhi Mat. Nauk, 1963, 18, 157–158 (in Russian) Zbl0138.38603
- [5] Kadets V.M., Shepelska V., Werner D., Quotients of Banach spaces with the Daugavet property, Bull. Pol. Acad. Sci. Math., 2008, 56, 131–147 http://dx.doi.org/10.4064/ba56-2-5 Zbl1163.46005
- [6] Kadets V.M., Shvidkoy R.V., Sirotkin G.G., Werner D., Banach spaces with the Daugavet property, Trans. Amer. Math. Soc., 2000, 352, 855–873 http://dx.doi.org/10.1090/S0002-9947-99-02377-6 Zbl0938.46016
- [7] Kadets V.M., Werner D., A Banach space with the Schur and the Daugavet property, Proc. Amer. Math. Soc., 2004, 132, 1765–1773 http://dx.doi.org/10.1090/S0002-9939-03-07278-2 Zbl1043.46015
- [8] Lindenstrauss J., Tzafriri L., Classical Banach Spaces II: Function spaces, Springer-Verlag, Berlin-Heidelberg-New York, 1979 Zbl0403.46022
- [9] Lozanovskii G.Ya., On almost integral operators in KB-spaces, Vestnik Leningrad Univ. Mat. Mekh. Astr., 1966, 21, 35–44 (in Russian)
- [10] Popov M.M., Daugavet type inequalities for narrow operators in the space L 1, Mat. Stud., 2003, 20, 75–84 Zbl1056.46013
- [11] Shvidkoy R.V., Geometric aspects of the Daugavet property, J. Funct. Anal., 2000, 176, 198–212 http://dx.doi.org/10.1006/jfan.2000.3626 Zbl0964.46006
- [12] Talagrand M., The three-space problem for L 1, J. Amer. Math. Soc., 1990, 3, 9–29 http://dx.doi.org/10.2307/1990983 Zbl0727.46012
- [13] Werner D., Recent progress on the Daugavet property, Irish Math. Soc. Bull., 2001, 46, 77–97 Zbl0991.46009
- [14] Werner D., The Daugavet equation for operators on function spaces, J. Funct. Anal., 1997, 143, 117–128 http://dx.doi.org/10.1006/jfan.1996.2979 Zbl0899.47025
- [15] Wojtaszczyk P., Some remarks on the Daugavet equation, Proc. Amer. Math. Soc., 1992, 115, 1047–1052 http://dx.doi.org/10.2307/2159353 Zbl0758.46006
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.