Isometries of some F-algebras of holomorphic functions on the upper half plane

Yasuo Iida; Kei Takahashi

Open Mathematics (2013)

  • Volume: 11, Issue: 6, page 1034-1038
  • ISSN: 2391-5455

Abstract

top
Linear isometries of N p(D) onto N p(D) are described, where N p(D), p > 1, is the set of all holomorphic functions f on the upper half plane D = {z ∈ ℂ: Im z > 0} such that supy>0 ∫ℝ lnp (1 + |(x + iy)|) dx < +∞. Our result is an improvement of the results by D.A. Efimov.

How to cite

top

Yasuo Iida, and Kei Takahashi. "Isometries of some F-algebras of holomorphic functions on the upper half plane." Open Mathematics 11.6 (2013): 1034-1038. <http://eudml.org/doc/268978>.

@article{YasuoIida2013,
abstract = {Linear isometries of N p(D) onto N p(D) are described, where N p(D), p > 1, is the set of all holomorphic functions f on the upper half plane D = \{z ∈ ℂ: Im z > 0\} such that supy>0 ∫ℝ lnp (1 + |(x + iy)|) dx < +∞. Our result is an improvement of the results by D.A. Efimov.},
author = {Yasuo Iida, Kei Takahashi},
journal = {Open Mathematics},
keywords = {Np(D); Nevanlinna class; Smirnov class; Linear isometry; linear isometry},
language = {eng},
number = {6},
pages = {1034-1038},
title = {Isometries of some F-algebras of holomorphic functions on the upper half plane},
url = {http://eudml.org/doc/268978},
volume = {11},
year = {2013},
}

TY - JOUR
AU - Yasuo Iida
AU - Kei Takahashi
TI - Isometries of some F-algebras of holomorphic functions on the upper half plane
JO - Open Mathematics
PY - 2013
VL - 11
IS - 6
SP - 1034
EP - 1038
AB - Linear isometries of N p(D) onto N p(D) are described, where N p(D), p > 1, is the set of all holomorphic functions f on the upper half plane D = {z ∈ ℂ: Im z > 0} such that supy>0 ∫ℝ lnp (1 + |(x + iy)|) dx < +∞. Our result is an improvement of the results by D.A. Efimov.
LA - eng
KW - Np(D); Nevanlinna class; Smirnov class; Linear isometry; linear isometry
UR - http://eudml.org/doc/268978
ER -

References

top
  1. [1] Efimov D.A., F-algebras of holomorphic functions in a half-plane defined by maximal functions, Dokl. Math., 2007, 76(2), 755–757 http://dx.doi.org/10.1134/S1064562407050298[Crossref] Zbl1156.30037
  2. [2] Eoff C.M., A representation of N α+ as a union of weighted Hardy spaces, Complex Variables Theory Appl., 1993, 23(3–4), 189–199 http://dx.doi.org/10.1080/17476939308814684[Crossref] 
  3. [3] Forelli F., The isometries of H p, Canad. J. Math., 1964, 16, 721–728 http://dx.doi.org/10.4153/CJM-1964-068-3[Crossref] Zbl0132.09403
  4. [4] Iida Y., On an F-algebra of holomorphic functions on the upper half plane, Hokkaido Math. J., 2006, 35(3), 487–495 Zbl1127.30018
  5. [5] Iida Y., Mochizuki N., Isometries of some F-algebras of holomorphic functions, Arch. Math. (Basel), 1998, 71(4), 297–300 http://dx.doi.org/10.1007/s000130050267[Crossref] Zbl0912.30030
  6. [6] Mochizuki N., Nevanlinna and Smirnov classes on the upper half plane, Hokkaido Math. J., 1991, 20(3), 609–620 Zbl0760.30016
  7. [7] Stein E.M., Weiss G., Introduction to Fourier Analysis on Euclidean Spaces, Princeton Math. Ser., 32, Princeton University Press, Princeton, 1971 Zbl0232.42007
  8. [8] Stephenson K., Isometries of the Nevanlinna class, Indiana Univ. Math. J., 1977, 26(2), 307–324 http://dx.doi.org/10.1512/iumj.1977.26.26023[Crossref] Zbl0326.30025
  9. [9] Stoll M., Mean growth and Taylor coefficients of some topological algebras of analytic functions, Ann. Polon. Math., 1977/78, 35(2), 139–158 Zbl0377.30036

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.