Isometries of some F-algebras of holomorphic functions on the upper half plane
Open Mathematics (2013)
- Volume: 11, Issue: 6, page 1034-1038
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topYasuo Iida, and Kei Takahashi. "Isometries of some F-algebras of holomorphic functions on the upper half plane." Open Mathematics 11.6 (2013): 1034-1038. <http://eudml.org/doc/268978>.
@article{YasuoIida2013,
abstract = {Linear isometries of N p(D) onto N p(D) are described, where N p(D), p > 1, is the set of all holomorphic functions f on the upper half plane D = \{z ∈ ℂ: Im z > 0\} such that supy>0 ∫ℝ lnp (1 + |(x + iy)|) dx < +∞. Our result is an improvement of the results by D.A. Efimov.},
author = {Yasuo Iida, Kei Takahashi},
journal = {Open Mathematics},
keywords = {Np(D); Nevanlinna class; Smirnov class; Linear isometry; linear isometry},
language = {eng},
number = {6},
pages = {1034-1038},
title = {Isometries of some F-algebras of holomorphic functions on the upper half plane},
url = {http://eudml.org/doc/268978},
volume = {11},
year = {2013},
}
TY - JOUR
AU - Yasuo Iida
AU - Kei Takahashi
TI - Isometries of some F-algebras of holomorphic functions on the upper half plane
JO - Open Mathematics
PY - 2013
VL - 11
IS - 6
SP - 1034
EP - 1038
AB - Linear isometries of N p(D) onto N p(D) are described, where N p(D), p > 1, is the set of all holomorphic functions f on the upper half plane D = {z ∈ ℂ: Im z > 0} such that supy>0 ∫ℝ lnp (1 + |(x + iy)|) dx < +∞. Our result is an improvement of the results by D.A. Efimov.
LA - eng
KW - Np(D); Nevanlinna class; Smirnov class; Linear isometry; linear isometry
UR - http://eudml.org/doc/268978
ER -
References
top- [1] Efimov D.A., F-algebras of holomorphic functions in a half-plane defined by maximal functions, Dokl. Math., 2007, 76(2), 755–757 http://dx.doi.org/10.1134/S1064562407050298[Crossref] Zbl1156.30037
- [2] Eoff C.M., A representation of N α+ as a union of weighted Hardy spaces, Complex Variables Theory Appl., 1993, 23(3–4), 189–199 http://dx.doi.org/10.1080/17476939308814684[Crossref]
- [3] Forelli F., The isometries of H p, Canad. J. Math., 1964, 16, 721–728 http://dx.doi.org/10.4153/CJM-1964-068-3[Crossref] Zbl0132.09403
- [4] Iida Y., On an F-algebra of holomorphic functions on the upper half plane, Hokkaido Math. J., 2006, 35(3), 487–495 Zbl1127.30018
- [5] Iida Y., Mochizuki N., Isometries of some F-algebras of holomorphic functions, Arch. Math. (Basel), 1998, 71(4), 297–300 http://dx.doi.org/10.1007/s000130050267[Crossref] Zbl0912.30030
- [6] Mochizuki N., Nevanlinna and Smirnov classes on the upper half plane, Hokkaido Math. J., 1991, 20(3), 609–620 Zbl0760.30016
- [7] Stein E.M., Weiss G., Introduction to Fourier Analysis on Euclidean Spaces, Princeton Math. Ser., 32, Princeton University Press, Princeton, 1971 Zbl0232.42007
- [8] Stephenson K., Isometries of the Nevanlinna class, Indiana Univ. Math. J., 1977, 26(2), 307–324 http://dx.doi.org/10.1512/iumj.1977.26.26023[Crossref] Zbl0326.30025
- [9] Stoll M., Mean growth and Taylor coefficients of some topological algebras of analytic functions, Ann. Polon. Math., 1977/78, 35(2), 139–158 Zbl0377.30036
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.