Isometries of some F-algebras of holomorphic functions on the upper half plane
Open Mathematics (2013)
- Volume: 11, Issue: 6, page 1034-1038
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] Efimov D.A., F-algebras of holomorphic functions in a half-plane defined by maximal functions, Dokl. Math., 2007, 76(2), 755–757 http://dx.doi.org/10.1134/S1064562407050298[Crossref] Zbl1156.30037
- [2] Eoff C.M., A representation of N α+ as a union of weighted Hardy spaces, Complex Variables Theory Appl., 1993, 23(3–4), 189–199 http://dx.doi.org/10.1080/17476939308814684[Crossref]
- [3] Forelli F., The isometries of H p, Canad. J. Math., 1964, 16, 721–728 http://dx.doi.org/10.4153/CJM-1964-068-3[Crossref] Zbl0132.09403
- [4] Iida Y., On an F-algebra of holomorphic functions on the upper half plane, Hokkaido Math. J., 2006, 35(3), 487–495 Zbl1127.30018
- [5] Iida Y., Mochizuki N., Isometries of some F-algebras of holomorphic functions, Arch. Math. (Basel), 1998, 71(4), 297–300 http://dx.doi.org/10.1007/s000130050267[Crossref] Zbl0912.30030
- [6] Mochizuki N., Nevanlinna and Smirnov classes on the upper half plane, Hokkaido Math. J., 1991, 20(3), 609–620 Zbl0760.30016
- [7] Stein E.M., Weiss G., Introduction to Fourier Analysis on Euclidean Spaces, Princeton Math. Ser., 32, Princeton University Press, Princeton, 1971 Zbl0232.42007
- [8] Stephenson K., Isometries of the Nevanlinna class, Indiana Univ. Math. J., 1977, 26(2), 307–324 http://dx.doi.org/10.1512/iumj.1977.26.26023[Crossref] Zbl0326.30025
- [9] Stoll M., Mean growth and Taylor coefficients of some topological algebras of analytic functions, Ann. Polon. Math., 1977/78, 35(2), 139–158 Zbl0377.30036