# An equivalence between varieties of cyclic Post algebras and varieties generated by a finite field

Open Mathematics (2006)

• Volume: 4, Issue: 4, page 547-561
• ISSN: 2391-5455

top

## Abstract

top
In this paper we give a term equivalence between the simple k-cyclic Post algebra of order p, L p,k, and the finite field F(p k) with constants F(p). By using Lagrange polynomials, we give an explicit procedure to obtain an interpretation Φ1 of the variety V(L p,k) generated by L p,k into the variety V(F(p k)) generated by F(p k) and an interpretation Φ2 of V(F(p k)) into V(L p,k) such that Φ2Φ1(B) = B for every B ε V(L p,k) and Φ1Φ2(R) = R for every R ε V(F(p k)).

## How to cite

top

Abad Manuel, et al. "An equivalence between varieties of cyclic Post algebras and varieties generated by a finite field." Open Mathematics 4.4 (2006): 547-561. <http://eudml.org/doc/268989>.

abstract = {In this paper we give a term equivalence between the simple k-cyclic Post algebra of order p, L p,k, and the finite field F(p k) with constants F(p). By using Lagrange polynomials, we give an explicit procedure to obtain an interpretation Φ1 of the variety V(L p,k) generated by L p,k into the variety V(F(p k)) generated by F(p k) and an interpretation Φ2 of V(F(p k)) into V(L p,k) such that Φ2Φ1(B) = B for every B ε V(L p,k) and Φ1Φ2(R) = R for every R ε V(F(p k)).},
author = {Abad Manuel, Díaz Varela J., López Martinolich B., C. Vannicola M., Zander M.},
journal = {Open Mathematics},
keywords = {06D25; 12E20; 03G25},
language = {eng},
number = {4},
pages = {547-561},
title = {An equivalence between varieties of cyclic Post algebras and varieties generated by a finite field},
url = {http://eudml.org/doc/268989},
volume = {4},
year = {2006},
}

TY - JOUR
AU - Díaz Varela J.
AU - López Martinolich B.
AU - C. Vannicola M.
AU - Zander M.
TI - An equivalence between varieties of cyclic Post algebras and varieties generated by a finite field
JO - Open Mathematics
PY - 2006
VL - 4
IS - 4
SP - 547
EP - 561
AB - In this paper we give a term equivalence between the simple k-cyclic Post algebra of order p, L p,k, and the finite field F(p k) with constants F(p). By using Lagrange polynomials, we give an explicit procedure to obtain an interpretation Φ1 of the variety V(L p,k) generated by L p,k into the variety V(F(p k)) generated by F(p k) and an interpretation Φ2 of V(F(p k)) into V(L p,k) such that Φ2Φ1(B) = B for every B ε V(L p,k) and Φ1Φ2(R) = R for every R ε V(F(p k)).
LA - eng
KW - 06D25; 12E20; 03G25
UR - http://eudml.org/doc/268989
ER -

## References

top
1. [1] M. Abad: “Cyclic Post algebras of order n”, An. Acad. Brasil. Ciênc., Vol. 53(2), (1981), pp. 243–246.
2. [2] R. Balbes and P. Dwinger: Distributive Lattices, University of Missouri Press, Columbia, MO., 1974.
3. [3] V. Boicescu, A. Filipoiu, G. Georgescu and S. Rudeanu: Lukasiewicz-Moisil Algebras, Annals of Discrete Mathematics, Vol. 49, North-Holland, Amsterdam, 1991.
4. [4] S. Burris and H. Sankappanavar: A Course in Universal Algebra, Graduate Texts in Mathematics, Vol 78, Springer, Berlin, 1981.
5. [5] H. Cendra: “Cyclic Boolean algebras and Galois fields F(2k)”, Portugal. Math., Vol. 39(1–4), (1980), pp. 435–440.
6. [6] G. Epstein: “The lattice theory of Post algebras”, Trans. Amer. Math. Soc., Vol. 95, (1960), pp. 300–317. http://dx.doi.org/10.2307/1993293
7. [7] K. Kaarly and A.F. Pixley: Polynomial Completeness in Algebraic Systems, Chapman and Hall, Boca Raton, 2001.
8. [8] S. Lang: Algebra, Addison-Wesley Publishing Company, CA., 1984.
9. [9] R. Lewin: “Interpretability into Łukasiewicz algebras”, Rev. Un. Mat. Argentina, Vol. 41(3), (1999), pp. 81–98.
10. [10] R. McKenzie, G. McNulty and W. Taylor: Algebras, Lattices, Varieties, Vol. I, Wadsworth and Brooks, Monterey, CA, 1987.
11. [11] A. Monteiro: “Algèbres de Boole cycliques”, Rev. Roumaine de Mathématiques Pures Appl., Vol. 23(1), (1978), pp. 71–76.
12. [12] G. Moisil: Algebra schemelor cu elemente ventil, Seria St. nat. 4–5, Revista Universitatii C.I. Parhon, Bucharest, 1954, pp. 9–15.
13. [13] G. Moisil: “Algèbres universelles et automates”, In: Essais sur les Logiques non Chrysippiennes, Editions de L’Academie de la Republique Socialiste de Roumanie, Bucharest, 1972.
14. [14] S. Rudeanu: Boolean functions and equations, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York, 1974.
15. [15] M. Serfati: “Introduction aux Algèbres de Post et à leurs applications (logiques à r valeurs-équations postiennes-graphoïdes orientés)”, Cahiers du Bureau Universitaire de Recherche Opérationnelle Université Paris VI. Série Recherche, Vol. 21, (1973), pp. 35–42.

## NotesEmbed?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.