An equivalence between varieties of cyclic Post algebras and varieties generated by a finite field
In this paper we give a term equivalence between the simple k-cyclic Post algebra of order p, L p,k, and the finite field F(p k) with constants F(p). By using Lagrange polynomials, we give an explicit procedure to obtain an interpretation Φ1 of the variety V(L p,k) generated by L p,k into the variety V(F(p k)) generated by F(p k) and an interpretation Φ2 of V(F(p k)) into V(L p,k) such that Φ2Φ1(B) = B for every B ε V(L p,k) and Φ1Φ2(R) = R for every R ε V(F(p k)).