Global bifurcation of homoclinic trajectories of discrete dynamical systems

Jacobo Pejsachowicz; Robert Skiba

Open Mathematics (2012)

  • Volume: 10, Issue: 6, page 2088-2109
  • ISSN: 2391-5455

Abstract

top
We prove the existence of an unbounded connected branch of nontrivial homoclinic trajectories of a family of discrete nonautonomous asymptotically hyperbolic systems parametrized by a circle under assumptions involving topological properties of the asymptotic stable bundles.

How to cite

top

Jacobo Pejsachowicz, and Robert Skiba. "Global bifurcation of homoclinic trajectories of discrete dynamical systems." Open Mathematics 10.6 (2012): 2088-2109. <http://eudml.org/doc/268994>.

@article{JacoboPejsachowicz2012,
abstract = {We prove the existence of an unbounded connected branch of nontrivial homoclinic trajectories of a family of discrete nonautonomous asymptotically hyperbolic systems parametrized by a circle under assumptions involving topological properties of the asymptotic stable bundles.},
author = {Jacobo Pejsachowicz, Robert Skiba},
journal = {Open Mathematics},
keywords = {Homoclinics; Bifurcation; Index bundle; bifurcation; index bundle; hyperbolic systems; linear Fredholm operator; homoclinic trajectories; topological degree},
language = {eng},
number = {6},
pages = {2088-2109},
title = {Global bifurcation of homoclinic trajectories of discrete dynamical systems},
url = {http://eudml.org/doc/268994},
volume = {10},
year = {2012},
}

TY - JOUR
AU - Jacobo Pejsachowicz
AU - Robert Skiba
TI - Global bifurcation of homoclinic trajectories of discrete dynamical systems
JO - Open Mathematics
PY - 2012
VL - 10
IS - 6
SP - 2088
EP - 2109
AB - We prove the existence of an unbounded connected branch of nontrivial homoclinic trajectories of a family of discrete nonautonomous asymptotically hyperbolic systems parametrized by a circle under assumptions involving topological properties of the asymptotic stable bundles.
LA - eng
KW - Homoclinics; Bifurcation; Index bundle; bifurcation; index bundle; hyperbolic systems; linear Fredholm operator; homoclinic trajectories; topological degree
UR - http://eudml.org/doc/268994
ER -

References

top
  1. [1] Abbondandolo A., Majer P., On the global stable manifold, Studia Math., 2006, 177(2), 113–131 http://dx.doi.org/10.4064/sm177-2-2[Crossref] Zbl1105.37018
  2. [2] Alexander J.C., A primer on connectivity, In: Fixed Point Theory, Sherbrooke, June 2–21, 1980, Lecture Notes in Math., 886, Springer, Berlin-New York, 1981, 455–483 
  3. [3] Atiyah M.F., K-Theory, W.A. Benjamin, New York-Amsterdam, 1967 
  4. [4] Bachman G., Narici L., Functional Analysis, Dover, Mineola, 2000 Zbl0983.46001
  5. [5] Bartsch T., The global structure of the zero set of a family of semilinear Fredholm maps, Nonlinear Anal., 1991, 17(4), 313–331 http://dx.doi.org/10.1016/0362-546X(91)90074-B[Crossref] 
  6. [6] Baskakov A.G., On the invertibility and the Fredholm property of difference operators, Math. Notes, 2000, 67(5–6), 690–698 http://dx.doi.org/10.1007/BF02675622[Crossref] Zbl1055.47507
  7. [7] Fitzpatrick P.M., Pejsachowicz J., The fundamental group of the space of linear Fredholm operators and the global analysis of semilinear equations, In: Fixed Point Theory and its Applications, Berkeley, August 4–6, 1986, Contemp. Math., 72, American Mathematical Society, Providence, 1988, 47–87 http://dx.doi.org/10.1090/conm/072/956479[Crossref] 
  8. [8] Fitzpatrick P.M., Pejsachowicz J., Rabier P.J., The degree of proper C 2 Fredholm mappings I, J. Reine Angew. Math., 1992, 427, 1–33 Zbl0745.47049
  9. [9] Husemoller D., Fibre Bundles, 2nd ed., Grad. Texts in Math., 20, Springer, New York-Heidelberg, 1975 Zbl0307.55015
  10. [10] Kato T., Perturbation Theory for Linear Operators, 2nd ed., Grundlehren Math. Wiss., 132, Springer, Berlin-New York, 1976 http://dx.doi.org/10.1007/978-3-642-66282-9[Crossref] 
  11. [11] Morris J.R., Nonlinear Ordinary and Partial Differential Equations on Unbounded Domains, PhD thesis, University of Pittsburgh, 2005 
  12. [12] Pejsachowicz J., Bifurcation of homoclinics, Proc. Amer. Math. Soc., 2008, 136(1), 111–118 http://dx.doi.org/10.1090/S0002-9939-07-09088-0[Crossref][WoS] Zbl1134.34023
  13. [13] Pejsachowicz J., Bifurcation of homoclinics of Hamiltonian systems, Proc. Amer. Math. Soc., 2008, 136(6), 2055–2065 http://dx.doi.org/10.1090/S0002-9939-08-09342-8[WoS][Crossref] Zbl1139.37042
  14. [14] Pejsachowicz J., Topological invariants of bifurcation, In: C*-Algebras and Elliptic Theory II, Trends Math., Birkhäuser, Basel, 2008, 239–250 http://dx.doi.org/10.1007/978-3-7643-8604-7_12[Crossref] 
  15. [15] Pejsachowicz J., Bifurcation of Fredholm maps I. Index bundle and bifurcation, Topol. Methods Nonlinear Anal., 2011, 38(1), 115–168 Zbl1235.58011
  16. [16] Pejsachowicz J., Rabier P.J., Degree theory for C 1-Fredholm mappings of index 0, J. Anal. Math., 1998, 76, 289–319 http://dx.doi.org/10.1007/BF02786939 Zbl0932.47046
  17. [17] Pejsachowicz J., Skiba R., Topology and homoclinic trajectories of discrete dynamical systems, preprint available at http://arxiv.org/abs/1111.1402 [WoS] Zbl1261.39011
  18. [18] Pötzsche C., Nonautonomous bifurcation of bounded solutions I: a Lyapunov-Schmidt approach, Discrete Contin. Dyn. Syst. Ser. B, 2010, 14(2), 739–776 http://dx.doi.org/10.3934/dcdsb.2010.14.739[Crossref] 
  19. [19] Pötzsche C., Bifurcation Theory, Munich University of Technology, 2010, preprint available at http://wwwm12.ma.tum.de/web/poetzsch/Christian_Potzsche_(Publications)/Publications_files/BifScript.pdf 
  20. [20] Pötzsche C., Nonautonomous bifurcation of bounded solutions II: A shovel-bifurcation pattern, Discrete Contin. Dyn. Syst. Ser. A, 2011, 31(3), 941–973 http://dx.doi.org/10.3934/dcds.2011.31.941[Crossref] Zbl1258.37029
  21. [21] Pötzsche C., Nonautonomous continuation of bounded solutions, Commun. Pure Appl. Anal., 2011, 10(3), 937–961 http://dx.doi.org/10.3934/cpaa.2011.10.937[Crossref] Zbl1237.39005
  22. [22] Rasmussen M., Towards a bifurcation theory for nonautonomous difference equation, J. Difference Equ. Appl., 2006, 12(3–4), 297–312 http://dx.doi.org/10.1080/10236190500489400[Crossref] 
  23. [23] Sacker R.J., The splitting index for linear differential systems, J. Differential Equations, 1979, 33(3), 368–405 http://dx.doi.org/10.1016/0022-0396(79)90072-X[Crossref] 
  24. [24] Secchi S., Stuart C.A., Global bifurcation of homoclinic solutions of Hamiltonian systems, Discrete Contin. Dyn. Syst., 2003, 9(6), 1493–1518 http://dx.doi.org/10.3934/dcds.2003.9.1493[Crossref] Zbl1042.37046

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.