Hyperholomorphic connections on coherent sheaves and stability

Misha Verbitsky

Open Mathematics (2011)

  • Volume: 9, Issue: 3, page 535-557
  • ISSN: 2391-5455

Abstract

top
Let M be a hyperkähler manifold, and F a reflexive sheaf on M. Assume that F (away from its singularities) admits a connection ▿ with a curvature Θ which is invariant under the standard SU(2)-action on 2-forms. If Θ is square-integrable, such sheaf is called hyperholomorphic. Hyperholomorphic sheaves were studied at great length in [21]. Such sheaves are stable and their singular sets are hyperkähler subvarieties in M. In the present paper, we study sheaves admitting a connection with SU(2)-invariant curvature which is not necessary L 2-integrable. We show that such sheaves are polystable.

How to cite

top

Misha Verbitsky. "Hyperholomorphic connections on coherent sheaves and stability." Open Mathematics 9.3 (2011): 535-557. <http://eudml.org/doc/268995>.

@article{MishaVerbitsky2011,
abstract = {Let M be a hyperkähler manifold, and F a reflexive sheaf on M. Assume that F (away from its singularities) admits a connection ▿ with a curvature Θ which is invariant under the standard SU(2)-action on 2-forms. If Θ is square-integrable, such sheaf is called hyperholomorphic. Hyperholomorphic sheaves were studied at great length in [21]. Such sheaves are stable and their singular sets are hyperkähler subvarieties in M. In the present paper, we study sheaves admitting a connection with SU(2)-invariant curvature which is not necessary L 2-integrable. We show that such sheaves are polystable.},
author = {Misha Verbitsky},
journal = {Open Mathematics},
keywords = {Hyperkahler manifold; Coherent sheaf; Stable bundle; Twistor space; hyperkähler manifold; coherent sheaf; stable bundle; twistor space},
language = {eng},
number = {3},
pages = {535-557},
title = {Hyperholomorphic connections on coherent sheaves and stability},
url = {http://eudml.org/doc/268995},
volume = {9},
year = {2011},
}

TY - JOUR
AU - Misha Verbitsky
TI - Hyperholomorphic connections on coherent sheaves and stability
JO - Open Mathematics
PY - 2011
VL - 9
IS - 3
SP - 535
EP - 557
AB - Let M be a hyperkähler manifold, and F a reflexive sheaf on M. Assume that F (away from its singularities) admits a connection ▿ with a curvature Θ which is invariant under the standard SU(2)-action on 2-forms. If Θ is square-integrable, such sheaf is called hyperholomorphic. Hyperholomorphic sheaves were studied at great length in [21]. Such sheaves are stable and their singular sets are hyperkähler subvarieties in M. In the present paper, we study sheaves admitting a connection with SU(2)-invariant curvature which is not necessary L 2-integrable. We show that such sheaves are polystable.
LA - eng
KW - Hyperkahler manifold; Coherent sheaf; Stable bundle; Twistor space; hyperkähler manifold; coherent sheaf; stable bundle; twistor space
UR - http://eudml.org/doc/268995
ER -

References

top
  1. [1] Bando S., Siu Y.-T, Stable sheaves and Einstein-Hermitian metrics, In: Geometry and Analysis on Complex Manifolds, Festschrift for Professor S. Kobayashi’s 60th Birthday, World Scientific, Singapore, 1994, 39–59 
  2. [2] Bartocci C., Bruzzo, U., Hernández Ruipérez D., A hyperkähler Fourier transform, Differential Geom. Appl., 1998, 8(3), 239–249 http://dx.doi.org/10.1016/S0926-2245(98)00009-6 Zbl0951.32018
  3. [3] Beauville A., Variétés Kähleriennes dont la première classe de Chern est nulle, J. Differential Geom., 1983, 18(4), 755–782 Zbl0537.53056
  4. [4] Besse A.L., Einstein Manifolds, Ergeb. Math. Grenzgeb., 10, Springer, New York, 1987 
  5. [5] Calabi E., Métriques kählériennes et fibrès holomorphes, Ann. Sci. École Norm. Sup., 1979, 12(2), 269–294 Zbl0431.53056
  6. [6] Demailly J.-P., L 2 vanishing theorems for positive line bundles and adjunction theory, In: Transcendental Methods of Algebraic P eometry, Cetraro, July 1994, Lecture Notes in Math., 1646, Springer, Berlin, 1996, 1–97 http://dx.doi.org/10.1007/BFb0094302 
  7. [7] Demailly J.-P., Complex Analytic and Algebraic Geometry, book available at http://www-fourier.ujf-grenoble.fr/~demailly/books.html 
  8. [8] El Mir H., Sur le prolongement des courants positifs fermés, Acta Math., 1984, 153(1–2), 1–45 http://dx.doi.org/10.1007/BF02392374 Zbl0557.32003
  9. [9] Griffiths Ph., Harris J., Principles of Algebraic Geometry, Pure Appl. Math. (N.Y.), John Wiley & Sons, New York-Chichester-Brisbane-Toronto, 1978 Zbl0408.14001
  10. [10] Kaledin D, Verbitsky M., Non-Hermitian Yang-Mills connections, Selecta Math. (N.S.), 1998, 4(2), 279–320 http://dx.doi.org/10.1007/s000290050033 Zbl0917.53006
  11. [11] Kobayashi S., Differential Geometry of Complex Vector Bundles, Publ. Math. Soc. Japan, 15, Princeton University Press, Princeton, 1987 Zbl0708.53002
  12. [12] Okonek Ch., Schneider M., Spindler H., Vector Bundles on Complex Projective Spaces, Progr. Math., 3, Birkhäuser, Boston, 1980 Zbl0438.32016
  13. [13] Scheja G., Riemannsche Hebbarkeitssätze für Cohomologieklassen, Math. Ann., 1961, 144, 345–360 http://dx.doi.org/10.1007/BF01470506 Zbl0112.38001
  14. [14] Sibony N., Quelques problèmes de prolongement de courants en analyse complexe, Duke Math. J., 1985, 52(1), 157–197 http://dx.doi.org/10.1215/S0012-7094-85-05210-X Zbl0578.32023
  15. [15] Simpson CT., Constructing variations of Hodge structure using Yang-Mills theory and applications to uniformization, J. Amer. Math. Soc, 1988, 1(4), 867–918 http://dx.doi.org/10.1090/S0894-0347-1988-0944577-9 Zbl0669.58008
  16. [16] Skoda H., Prolongement des courants positifs fermés de masse finie, Invent. Math., 1982, 66(3), 361–376 http://dx.doi.org/10.1007/BF01389217 Zbl0488.58002
  17. [17] Uhlenbeck K., Yau ST., On the existence of Hermitian-Yang-Mills connections in stable vector bundles, In: Frontiers of the Mathematical Sciences, New York, 1985, Comm. Pure Appl. Math., 1986, 39(S1), S257–S293 
  18. [18] Verbitsky M., Tri-analytic subvarieties of hyper-Kaehler manifolds, Geom. Funct. Anal., 1995, 5(1), 92–104 http://dx.doi.org/10.1007/BF01928217 Zbl0827.53030
  19. [19] Verbitsky M., Hyper-Kähler embeddings and holomorphic symplectic geometry I, J. Algebraic Geom., 1996, 5(3), 401–413 Zbl0873.32010
  20. [20] Verbitsky M., Hyperholomorphic bundles over a hyper-Kähler manifold, J. Algebraic Geom., 1996, 5(4), 633–669 Zbl0865.32006
  21. [21] Verbitsky M., Hyperholomorphic sheaves and new examples of hyperkähler manifolds, In: Kaledin D., Verbitsky M., Hyperkahler Manifolds, Math. Phys. (Somerville), 12, International Press, Somerville, 1999, first part of the book 
  22. [22] Verbitsky M., Hypercomplex varieties, Comm. Anal. Geom., 1999, 7(2), 355–396 Zbl0935.32022
  23. [23] Verbitsky M., Plurisubharmonic functions in calibrated geometry and q-convexity, Math. Z., 2010, 264(4), 939–957 http://dx.doi.org/10.1007/s00209-009-0498-7 Zbl1188.53053
  24. [24] Verbitsky M., Positive forms on hyperkähler manifolds, Osaka J. Math., 2010, 47(2), 353–384 Zbl1196.32011
  25. [25] Yau ST., On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation I., Comm. Pure Appl. Math., 1978, 31(3), 339–411 http://dx.doi.org/10.1002/cpa.3160310304 Zbl0369.53059

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.