Hyperholomorphic connections on coherent sheaves and stability
Open Mathematics (2011)
- Volume: 9, Issue: 3, page 535-557
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topMisha Verbitsky. "Hyperholomorphic connections on coherent sheaves and stability." Open Mathematics 9.3 (2011): 535-557. <http://eudml.org/doc/268995>.
@article{MishaVerbitsky2011,
abstract = {Let M be a hyperkähler manifold, and F a reflexive sheaf on M. Assume that F (away from its singularities) admits a connection ▿ with a curvature Θ which is invariant under the standard SU(2)-action on 2-forms. If Θ is square-integrable, such sheaf is called hyperholomorphic. Hyperholomorphic sheaves were studied at great length in [21]. Such sheaves are stable and their singular sets are hyperkähler subvarieties in M. In the present paper, we study sheaves admitting a connection with SU(2)-invariant curvature which is not necessary L 2-integrable. We show that such sheaves are polystable.},
author = {Misha Verbitsky},
journal = {Open Mathematics},
keywords = {Hyperkahler manifold; Coherent sheaf; Stable bundle; Twistor space; hyperkähler manifold; coherent sheaf; stable bundle; twistor space},
language = {eng},
number = {3},
pages = {535-557},
title = {Hyperholomorphic connections on coherent sheaves and stability},
url = {http://eudml.org/doc/268995},
volume = {9},
year = {2011},
}
TY - JOUR
AU - Misha Verbitsky
TI - Hyperholomorphic connections on coherent sheaves and stability
JO - Open Mathematics
PY - 2011
VL - 9
IS - 3
SP - 535
EP - 557
AB - Let M be a hyperkähler manifold, and F a reflexive sheaf on M. Assume that F (away from its singularities) admits a connection ▿ with a curvature Θ which is invariant under the standard SU(2)-action on 2-forms. If Θ is square-integrable, such sheaf is called hyperholomorphic. Hyperholomorphic sheaves were studied at great length in [21]. Such sheaves are stable and their singular sets are hyperkähler subvarieties in M. In the present paper, we study sheaves admitting a connection with SU(2)-invariant curvature which is not necessary L 2-integrable. We show that such sheaves are polystable.
LA - eng
KW - Hyperkahler manifold; Coherent sheaf; Stable bundle; Twistor space; hyperkähler manifold; coherent sheaf; stable bundle; twistor space
UR - http://eudml.org/doc/268995
ER -
References
top- [1] Bando S., Siu Y.-T, Stable sheaves and Einstein-Hermitian metrics, In: Geometry and Analysis on Complex Manifolds, Festschrift for Professor S. Kobayashi’s 60th Birthday, World Scientific, Singapore, 1994, 39–59
- [2] Bartocci C., Bruzzo, U., Hernández Ruipérez D., A hyperkähler Fourier transform, Differential Geom. Appl., 1998, 8(3), 239–249 http://dx.doi.org/10.1016/S0926-2245(98)00009-6 Zbl0951.32018
- [3] Beauville A., Variétés Kähleriennes dont la première classe de Chern est nulle, J. Differential Geom., 1983, 18(4), 755–782 Zbl0537.53056
- [4] Besse A.L., Einstein Manifolds, Ergeb. Math. Grenzgeb., 10, Springer, New York, 1987
- [5] Calabi E., Métriques kählériennes et fibrès holomorphes, Ann. Sci. École Norm. Sup., 1979, 12(2), 269–294 Zbl0431.53056
- [6] Demailly J.-P., L 2 vanishing theorems for positive line bundles and adjunction theory, In: Transcendental Methods of Algebraic P eometry, Cetraro, July 1994, Lecture Notes in Math., 1646, Springer, Berlin, 1996, 1–97 http://dx.doi.org/10.1007/BFb0094302
- [7] Demailly J.-P., Complex Analytic and Algebraic Geometry, book available at http://www-fourier.ujf-grenoble.fr/~demailly/books.html
- [8] El Mir H., Sur le prolongement des courants positifs fermés, Acta Math., 1984, 153(1–2), 1–45 http://dx.doi.org/10.1007/BF02392374 Zbl0557.32003
- [9] Griffiths Ph., Harris J., Principles of Algebraic Geometry, Pure Appl. Math. (N.Y.), John Wiley & Sons, New York-Chichester-Brisbane-Toronto, 1978 Zbl0408.14001
- [10] Kaledin D, Verbitsky M., Non-Hermitian Yang-Mills connections, Selecta Math. (N.S.), 1998, 4(2), 279–320 http://dx.doi.org/10.1007/s000290050033 Zbl0917.53006
- [11] Kobayashi S., Differential Geometry of Complex Vector Bundles, Publ. Math. Soc. Japan, 15, Princeton University Press, Princeton, 1987 Zbl0708.53002
- [12] Okonek Ch., Schneider M., Spindler H., Vector Bundles on Complex Projective Spaces, Progr. Math., 3, Birkhäuser, Boston, 1980 Zbl0438.32016
- [13] Scheja G., Riemannsche Hebbarkeitssätze für Cohomologieklassen, Math. Ann., 1961, 144, 345–360 http://dx.doi.org/10.1007/BF01470506 Zbl0112.38001
- [14] Sibony N., Quelques problèmes de prolongement de courants en analyse complexe, Duke Math. J., 1985, 52(1), 157–197 http://dx.doi.org/10.1215/S0012-7094-85-05210-X Zbl0578.32023
- [15] Simpson CT., Constructing variations of Hodge structure using Yang-Mills theory and applications to uniformization, J. Amer. Math. Soc, 1988, 1(4), 867–918 http://dx.doi.org/10.1090/S0894-0347-1988-0944577-9 Zbl0669.58008
- [16] Skoda H., Prolongement des courants positifs fermés de masse finie, Invent. Math., 1982, 66(3), 361–376 http://dx.doi.org/10.1007/BF01389217 Zbl0488.58002
- [17] Uhlenbeck K., Yau ST., On the existence of Hermitian-Yang-Mills connections in stable vector bundles, In: Frontiers of the Mathematical Sciences, New York, 1985, Comm. Pure Appl. Math., 1986, 39(S1), S257–S293
- [18] Verbitsky M., Tri-analytic subvarieties of hyper-Kaehler manifolds, Geom. Funct. Anal., 1995, 5(1), 92–104 http://dx.doi.org/10.1007/BF01928217 Zbl0827.53030
- [19] Verbitsky M., Hyper-Kähler embeddings and holomorphic symplectic geometry I, J. Algebraic Geom., 1996, 5(3), 401–413 Zbl0873.32010
- [20] Verbitsky M., Hyperholomorphic bundles over a hyper-Kähler manifold, J. Algebraic Geom., 1996, 5(4), 633–669 Zbl0865.32006
- [21] Verbitsky M., Hyperholomorphic sheaves and new examples of hyperkähler manifolds, In: Kaledin D., Verbitsky M., Hyperkahler Manifolds, Math. Phys. (Somerville), 12, International Press, Somerville, 1999, first part of the book
- [22] Verbitsky M., Hypercomplex varieties, Comm. Anal. Geom., 1999, 7(2), 355–396 Zbl0935.32022
- [23] Verbitsky M., Plurisubharmonic functions in calibrated geometry and q-convexity, Math. Z., 2010, 264(4), 939–957 http://dx.doi.org/10.1007/s00209-009-0498-7 Zbl1188.53053
- [24] Verbitsky M., Positive forms on hyperkähler manifolds, Osaka J. Math., 2010, 47(2), 353–384 Zbl1196.32011
- [25] Yau ST., On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation I., Comm. Pure Appl. Math., 1978, 31(3), 339–411 http://dx.doi.org/10.1002/cpa.3160310304 Zbl0369.53059
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.