Secant tree calculus

Dominique Foata; Guo-Niu Han

Open Mathematics (2014)

  • Volume: 12, Issue: 12, page 1852-1870
  • ISSN: 2391-5455

Abstract

top
A true Tree Calculus is being developed to make a joint study of the two statistics “eoc” (end of minimal chain) and “pom” (parent of maximum leaf) on the set of secant trees. Their joint distribution restricted to the set {eoc-pom ≤ 1} is shown to satisfy two partial difference equation systems, to be symmetric and to be expressed in the form of an explicit three-variable generating function.

How to cite

top

Dominique Foata, and Guo-Niu Han. "Secant tree calculus." Open Mathematics 12.12 (2014): 1852-1870. <http://eudml.org/doc/268996>.

@article{DominiqueFoata2014,
abstract = {A true Tree Calculus is being developed to make a joint study of the two statistics “eoc” (end of minimal chain) and “pom” (parent of maximum leaf) on the set of secant trees. Their joint distribution restricted to the set \{eoc-pom ≤ 1\} is shown to satisfy two partial difference equation systems, to be symmetric and to be expressed in the form of an explicit three-variable generating function.},
author = {Dominique Foata, Guo-Niu Han},
journal = {Open Mathematics},
keywords = {Tree Calculus; Partial difference equations; Binary increasing labeled trees; Secant and tangent trees; End of minimal chain; Parent of maximum leaf; Bivariate distributions; Secant numbers; Entringer distribution; Alternating permutations; tree calculus; partial difference equations; binary increasing labeled trees; secant and tangent trees; end of minimal chain; parent of maximum leaf; bivariate distributions; secant numbers; alternating permutations},
language = {eng},
number = {12},
pages = {1852-1870},
title = {Secant tree calculus},
url = {http://eudml.org/doc/268996},
volume = {12},
year = {2014},
}

TY - JOUR
AU - Dominique Foata
AU - Guo-Niu Han
TI - Secant tree calculus
JO - Open Mathematics
PY - 2014
VL - 12
IS - 12
SP - 1852
EP - 1870
AB - A true Tree Calculus is being developed to make a joint study of the two statistics “eoc” (end of minimal chain) and “pom” (parent of maximum leaf) on the set of secant trees. Their joint distribution restricted to the set {eoc-pom ≤ 1} is shown to satisfy two partial difference equation systems, to be symmetric and to be expressed in the form of an explicit three-variable generating function.
LA - eng
KW - Tree Calculus; Partial difference equations; Binary increasing labeled trees; Secant and tangent trees; End of minimal chain; Parent of maximum leaf; Bivariate distributions; Secant numbers; Entringer distribution; Alternating permutations; tree calculus; partial difference equations; binary increasing labeled trees; secant and tangent trees; end of minimal chain; parent of maximum leaf; bivariate distributions; secant numbers; alternating permutations
UR - http://eudml.org/doc/268996
ER -

References

top
  1. [1] Désiré André, Développement de sec x et tan x, C. R. Math. Acad. Sci. Paris, 88 (1879), 965–979. 
  2. [2] Désiré André, Sur les permutations alternées, J. Math. Pures et Appl., 7 (1881), 167–184. 
  3. [3] Louis Comtet, Advanced Combinatorics, D. Reidel/Dordrecht-Holland, Boston, 1974. http://dx.doi.org/10.1007/978-94-010-2196-8 
  4. [4] R.C. Entringer, A combinatorial interpretation of the Euler and Bernoulli numbers, Nieuw Arch. Wisk., 14 (1966), 241–246. Zbl0145.01402
  5. [5] Dominique Foata; Guo-Niu Han, The doubloon polynomial triangle, Ramanujan J., 23(2010), 107–126 (The Andrews Festschrift). http://dx.doi.org/10.1007/s11139-009-9194-9 Zbl1218.05013
  6. [6] Dominique Foata; Guo-Niu Han, Doubloons and q-secant numbers, Münster J. of Math., 3(2010), 129–150. Zbl1238.05011
  7. [7] Dominique Foata; Guo-Niu Han, Doubloons and new q-tangent numbers, Quarterly J. Math., 62(2011), 417–432. http://dx.doi.org/10.1093/qmath/hap043 Zbl1225.05031
  8. [8] Dominique Foata; Guo-Niu Han, Finite difference calculus for alternating permutations, J. Difference Equations and Appl., 19(2013), 1952–1966. http://dx.doi.org/10.1080/10236198.2013.794794 Zbl1284.39001
  9. [9] Dominique Foata; Guo-Niu Han, Tree Calculus for Bivariate Difference Equations, J. Difference Equations and Appl., 2014, to appear, 36 pages. Zbl1306.05008
  10. [10] Markus Fulmek, A continued fraction expansion for a q-tangent function, Sém. Lothar. Combin., B45b(2000), 3pp. 
  11. [11] Yoann Gelineau; Heesung Shin; Jiang Zeng, Bijections for Entringer families, Europ. J. Combin., 32(2011), 100–115. http://dx.doi.org/10.1016/j.ejc.2010.07.004 Zbl1201.05004
  12. [12] Guo-Niu Han; Arthur Randrianarivony; Jiang Zeng, Un autre q-analogue des nombres d’Euler, The Andrews Festschrift. Seventeen Papers on Classical Number Theory and Combinatorics, D. Foata, G.-N. Han eds., Springer-Verlag, Berlin Heidelberg, 2001, pp. 139–158. Sém. Lothar. Combin., Art. B42e, 22 pp. 
  13. [13] Charles Jordan, Calculus of Finite Differences, Röttig and Romwalter, Budapest, 1939. 
  14. [14] M. Josuat-Vergès, A q-enumeration of alternating permutations, Europ. J. Combin., 31(2010), 1892–1906. http://dx.doi.org/10.1016/j.ejc.2010.01.008 Zbl1207.05007
  15. [15] Sergey Kitaev; Jeffrey Remmel, Quadrant Marked Mesh Patterns in Alternating Permutations, Sém. Lothar. Combin., B68a (2012), 20pp. 
  16. [16] A. G. Kuznetsov; I. M. Pak; A. E. Postnikov, Increasing trees and alternating permutations, Uspekhi Mat. Nauk, 49(1994), 79–110. Zbl0842.05025
  17. [17] Niels Nielsen, Traité élémentaire des nombres de Bernoulli, Paris, Gauthier-Villars, 1923. Zbl50.0170.04
  18. [18] Christiane Poupard, De nouvelles significations énumératives des nombres d’Entringer, Discrete Math., 38(1982), 265–271. http://dx.doi.org/10.1016/0012-365X(82)90293-X Zbl0482.05006
  19. [19] Christiane Poupard, Deux propriétés des arbres binaires ordonnés stricts, Europ. J. Combin., 10(1989), 369–374. http://dx.doi.org/10.1016/S0195-6698(89)80009-5 Zbl0692.05022
  20. [20] Christiane Poupard, Two other interpretations of the Entringer numbers, Europ. J. Combin., 18(1997), 939–943. http://dx.doi.org/10.1006/eujc.1997.0147 Zbl0886.05011
  21. [21] Helmut Prodinger, Combinatorics of geometrically distributed random variables: new q-tangent and q-secant numbers, Int. J. Math. Math. Sci., 24(2000), 825–838. http://dx.doi.org/10.1155/S0161171200004439 Zbl0965.05012
  22. [22] Helmut Prodinger, A Continued Fraction Expansion for a q-Tangent Function: an Elementary Proof, Sém. Lothar. Combin., B60b (2008), 3 pp. 
  23. [23] Richard P. Stanley, A Survey of Alternating Permutations, in Combinatorics and graphs, 165–196, Contemp. Math., 531, Amer. Math. Soc. Providence, RI, 2010. http://dx.doi.org/10.1090/conm/531/10466 Zbl1231.05288
  24. [24] Heesung Shin; Jiang Zeng, The q-tangent and q-secant numbers via continued fractions, Europ. J. Combin., 31(2010), 1689–1705. http://dx.doi.org/10.1016/j.ejc.2010.04.003 Zbl1258.05003
  25. [25] Xavier G. Viennot, Séries génératrices énumératives, chap. 3, Lecture Notes, 160 p., 1988, notes de cours donnés à l’École Normale Supérieure Ulm (Paris), UQAM (Montréal, Québec) et Université de Wuhan (Chine) http://web.mac.com/xgviennot/Xavier_Viennot/cours.html. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.