Page 1

Displaying 1 – 11 of 11

Showing per page

Curvature on a graph via its geometric spectrum

Paul Baird (2013)

Actes des rencontres du CIRM

We approach the problem of defining curvature on a graph by attempting to attach a ‘best-fit polytope’ to each vertex, or more precisely what we refer to as a configured star. How this should be done depends upon the global structure of the graph which is reflected in its geometric spectrum. Mean curvature is the most natural curvature that arises in this context and corresponds to local liftings of the graph into a suitable Euclidean space. We discuss some examples.

Iterated oscillation criteria for delay partial difference equations

Başak Karpuz, Özkan Öcalan (2014)

Mathematica Bohemica

In this paper, by using an iterative scheme, we advance the main oscillation result of Zhang and Liu (1997). We not only extend this important result but also drop a superfluous condition even in the noniterated case. Moreover, we present some illustrative examples for which the previous results cannot deliver answers for the oscillation of solutions but with our new efficient test, we can give affirmative answers for the oscillatory behaviour of solutions. For a visual explanation of the examples,...

Secant tree calculus

Dominique Foata, Guo-Niu Han (2014)

Open Mathematics

A true Tree Calculus is being developed to make a joint study of the two statistics “eoc” (end of minimal chain) and “pom” (parent of maximum leaf) on the set of secant trees. Their joint distribution restricted to the set {eoc-pom ≤ 1} is shown to satisfy two partial difference equation systems, to be symmetric and to be expressed in the form of an explicit three-variable generating function.

Currently displaying 1 – 11 of 11

Page 1