Interval algorithm for absolute value equations
Aixiang Wang; Haijun Wang; Yongkun Deng
Open Mathematics (2011)
- Volume: 9, Issue: 5, page 1171-1184
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topAixiang Wang, Haijun Wang, and Yongkun Deng. "Interval algorithm for absolute value equations." Open Mathematics 9.5 (2011): 1171-1184. <http://eudml.org/doc/269001>.
@article{AixiangWang2011,
abstract = {We investigate the absolute value equations Ax−|x| = b. Based on ɛ-inflation, an interval verification method is proposed. Theoretic analysis and numerical results show that the new proposed method is effective.},
author = {Aixiang Wang, Haijun Wang, Yongkun Deng},
journal = {Open Mathematics},
keywords = {Absolute value equations; Generalized Newton method; ɛ-inflation; Interval iteration; Error estimation; absolute value equation; generalized Newton method; -inflation; interval iteration; error estimation; linear complementarity problem},
language = {eng},
number = {5},
pages = {1171-1184},
title = {Interval algorithm for absolute value equations},
url = {http://eudml.org/doc/269001},
volume = {9},
year = {2011},
}
TY - JOUR
AU - Aixiang Wang
AU - Haijun Wang
AU - Yongkun Deng
TI - Interval algorithm for absolute value equations
JO - Open Mathematics
PY - 2011
VL - 9
IS - 5
SP - 1171
EP - 1184
AB - We investigate the absolute value equations Ax−|x| = b. Based on ɛ-inflation, an interval verification method is proposed. Theoretic analysis and numerical results show that the new proposed method is effective.
LA - eng
KW - Absolute value equations; Generalized Newton method; ɛ-inflation; Interval iteration; Error estimation; absolute value equation; generalized Newton method; -inflation; interval iteration; error estimation; linear complementarity problem
UR - http://eudml.org/doc/269001
ER -
References
top- [1] Alefeld G., Mayer G., Interval Analysis: Theory and Applications, J. Comput. Appl. Math., 2000, 121, 421–464 http://dx.doi.org/10.1016/S0377-0427(00)00342-3 Zbl0995.65056
- [2] Caccetta L, Qu B., Zhou G., A globally and quadratically convergent method for absolute value equations, Comput. Optim. Appl., 2011, 48(1), 45–58 http://dx.doi.org/10.1007/s10589-009-9242-9 Zbl1230.90195
- [3] Chen X., Qi L., Sun D., Global and superlinear convergence of the smoothing Newton method and its application to general box constrained variational inequalities, Math. Comp., 1998, 67(222), 519–540 http://dx.doi.org/10.1090/S0025-5718-98-00932-6 Zbl0894.90143
- [4] Clarke F.H., Optimization and Nonsmooth Analysis, 2nd ed., Classics Appl. Math., 5, Society for Industrial and Applied Mathematics, Philadelphia, 1990 Zbl0696.49002
- [5] Mangasarian O.L, Absolute value programming, Comput. Optim. Appl, 2007, 36(1), 43–53 http://dx.doi.org/10.1007/s10589-006-0395-5 Zbl1278.90386
- [6] Mangasarian O.L, A generalized Newton method for absolute value equations, Optim. Lett., 2009, 3(1), 101–108 http://dx.doi.org/10.1007/s11590-008-0094-5
- [7] Mangasarian O.L, Knapsack feasibility as an absolute value equation solvable by successive linear programming, Optim. Lett, 2009, 3(2), 161–170 http://dx.doi.org/10.1007/s11590-008-0102-9 Zbl1173.90474
- [8] Mangasarian O.L, Meyer R.R., Absolute value equations, Linear Algebra Appl., 2006, 419(2–3), 359–367 http://dx.doi.org/10.1016/j.laa.2006.05.004 Zbl1172.15302
- [9] Mayer G., Epsilon-inflation in verification algorithms, J. Comput. Appl. Math., 1995, 60(1–2), 147–169 http://dx.doi.org/10.1016/0377-0427(94)00089-J Zbl0839.65059
- [10] Moore R.E., A test for existence of solutions to nonlinear systems, SIAM J. Numer. Anal., 1977, 14(4), 611–615 http://dx.doi.org/10.1137/0714040 Zbl0365.65034
- [11] Moore R.E., Methods and Applications of Interval Analysis, SIAM Stud. Appl. Math., 2, Society for Industrial and Applied Mathematics, Philadelphia, 1979
- [12] Prokopyev O., On equivalent reformulations for absolute value equations, Comput. Optim. Appl., 2009, 44(3), 363–372 http://dx.doi.org/10.1007/s10589-007-9158-1 Zbl1181.90263
- [13] Qi L., Sun D., Smoothing functions and smoothing Newton method for complementarity and variational inequality problems, J. Optim. Theory Appl., 2002, 113(1), 121–147 http://dx.doi.org/10.1023/A:1014861331301 Zbl1032.49017
- [14] Rohn J., Systems of linear interval equations, Linear Algebra Appl., 1989, 126, 39–78 http://dx.doi.org/10.1016/0024-3795(89)90004-9
- [15] Rohn J., A theorem of the alternatives for the equation Ax + B|x| = b, Linear Multilinear Algebra, 2004, 52(6), 421–426 http://dx.doi.org/10.1080/0308108042000220686 Zbl1070.15002
- [16] Rohn J., Description of all solutions of a linear complementarity problem, Electron. J. Linear Algebra, 2009, 18, 246–252 Zbl1177.90387
- [17] Rohn J., An algorithm for solving the absolute value equation, Electron. J. Linear Algebra, 2009, 18, 589–599 Zbl1189.65082
- [18] Rohn J., On unique solvability of the absolute value equation, Optim. Lett., 2009, 3(4), 603–606 http://dx.doi.org/10.1007/s11590-009-0129-6 Zbl1172.90009
- [19] Rohn J., A residual existence theorem for linear equations, Optim. Lett., 2010, 4(2), 287–292 http://dx.doi.org/10.1007/s11590-009-0160-7 Zbl1190.90098
- [20] Rump S.M., Kleine Fehlerschranken bei Matrixproblemen, Ph.D. thesis, Universität Karlsruhe, 1980 Zbl0437.65036
- [21] Rump S.M., New results on verified inclusions, In: Accurate Scientific Computations, Bad Neuenahr, 1985, Lecture Notes in Comput. Sci., 235, Springer, Berlin, 1986, 31–69
- [22] Rump S.M., On the solution of interval linear systems, Computing, 1992, 47(3–4), 337–353 http://dx.doi.org/10.1007/BF02320201
- [23] Rump S.M., Verified solution of large systems and global optimization problems, J. Comput. Appl. Math., 1995, 60(1–2), 201–218 http://dx.doi.org/10.1016/0377-0427(94)00092-F
- [24] Rump S.M., INTLAB-INTerval LABoratory, In: Developments in Reliable Computing, Budapest, September 22–25, 1998, Kluwer, Dordrecht, 1999, 77–104
- [25] Zhang C, Wei Q.J., Global and finite convergence of a generalized Newton method for absolute value equations, J. Optim. Theory Appl., 2009, 143(2), 391–403 http://dx.doi.org/10.1007/s10957-009-9557-9 Zbl1175.90418
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.