Interval algorithm for absolute value equations

Aixiang Wang; Haijun Wang; Yongkun Deng

Open Mathematics (2011)

  • Volume: 9, Issue: 5, page 1171-1184
  • ISSN: 2391-5455

Abstract

top
We investigate the absolute value equations Ax−|x| = b. Based on ɛ-inflation, an interval verification method is proposed. Theoretic analysis and numerical results show that the new proposed method is effective.

How to cite

top

Aixiang Wang, Haijun Wang, and Yongkun Deng. "Interval algorithm for absolute value equations." Open Mathematics 9.5 (2011): 1171-1184. <http://eudml.org/doc/269001>.

@article{AixiangWang2011,
abstract = {We investigate the absolute value equations Ax−|x| = b. Based on ɛ-inflation, an interval verification method is proposed. Theoretic analysis and numerical results show that the new proposed method is effective.},
author = {Aixiang Wang, Haijun Wang, Yongkun Deng},
journal = {Open Mathematics},
keywords = {Absolute value equations; Generalized Newton method; ɛ-inflation; Interval iteration; Error estimation; absolute value equation; generalized Newton method; -inflation; interval iteration; error estimation; linear complementarity problem},
language = {eng},
number = {5},
pages = {1171-1184},
title = {Interval algorithm for absolute value equations},
url = {http://eudml.org/doc/269001},
volume = {9},
year = {2011},
}

TY - JOUR
AU - Aixiang Wang
AU - Haijun Wang
AU - Yongkun Deng
TI - Interval algorithm for absolute value equations
JO - Open Mathematics
PY - 2011
VL - 9
IS - 5
SP - 1171
EP - 1184
AB - We investigate the absolute value equations Ax−|x| = b. Based on ɛ-inflation, an interval verification method is proposed. Theoretic analysis and numerical results show that the new proposed method is effective.
LA - eng
KW - Absolute value equations; Generalized Newton method; ɛ-inflation; Interval iteration; Error estimation; absolute value equation; generalized Newton method; -inflation; interval iteration; error estimation; linear complementarity problem
UR - http://eudml.org/doc/269001
ER -

References

top
  1. [1] Alefeld G., Mayer G., Interval Analysis: Theory and Applications, J. Comput. Appl. Math., 2000, 121, 421–464 http://dx.doi.org/10.1016/S0377-0427(00)00342-3 Zbl0995.65056
  2. [2] Caccetta L, Qu B., Zhou G., A globally and quadratically convergent method for absolute value equations, Comput. Optim. Appl., 2011, 48(1), 45–58 http://dx.doi.org/10.1007/s10589-009-9242-9 Zbl1230.90195
  3. [3] Chen X., Qi L., Sun D., Global and superlinear convergence of the smoothing Newton method and its application to general box constrained variational inequalities, Math. Comp., 1998, 67(222), 519–540 http://dx.doi.org/10.1090/S0025-5718-98-00932-6 Zbl0894.90143
  4. [4] Clarke F.H., Optimization and Nonsmooth Analysis, 2nd ed., Classics Appl. Math., 5, Society for Industrial and Applied Mathematics, Philadelphia, 1990 Zbl0696.49002
  5. [5] Mangasarian O.L, Absolute value programming, Comput. Optim. Appl, 2007, 36(1), 43–53 http://dx.doi.org/10.1007/s10589-006-0395-5 Zbl1278.90386
  6. [6] Mangasarian O.L, A generalized Newton method for absolute value equations, Optim. Lett., 2009, 3(1), 101–108 http://dx.doi.org/10.1007/s11590-008-0094-5 
  7. [7] Mangasarian O.L, Knapsack feasibility as an absolute value equation solvable by successive linear programming, Optim. Lett, 2009, 3(2), 161–170 http://dx.doi.org/10.1007/s11590-008-0102-9 Zbl1173.90474
  8. [8] Mangasarian O.L, Meyer R.R., Absolute value equations, Linear Algebra Appl., 2006, 419(2–3), 359–367 http://dx.doi.org/10.1016/j.laa.2006.05.004 Zbl1172.15302
  9. [9] Mayer G., Epsilon-inflation in verification algorithms, J. Comput. Appl. Math., 1995, 60(1–2), 147–169 http://dx.doi.org/10.1016/0377-0427(94)00089-J Zbl0839.65059
  10. [10] Moore R.E., A test for existence of solutions to nonlinear systems, SIAM J. Numer. Anal., 1977, 14(4), 611–615 http://dx.doi.org/10.1137/0714040 Zbl0365.65034
  11. [11] Moore R.E., Methods and Applications of Interval Analysis, SIAM Stud. Appl. Math., 2, Society for Industrial and Applied Mathematics, Philadelphia, 1979 
  12. [12] Prokopyev O., On equivalent reformulations for absolute value equations, Comput. Optim. Appl., 2009, 44(3), 363–372 http://dx.doi.org/10.1007/s10589-007-9158-1 Zbl1181.90263
  13. [13] Qi L., Sun D., Smoothing functions and smoothing Newton method for complementarity and variational inequality problems, J. Optim. Theory Appl., 2002, 113(1), 121–147 http://dx.doi.org/10.1023/A:1014861331301 Zbl1032.49017
  14. [14] Rohn J., Systems of linear interval equations, Linear Algebra Appl., 1989, 126, 39–78 http://dx.doi.org/10.1016/0024-3795(89)90004-9 
  15. [15] Rohn J., A theorem of the alternatives for the equation Ax + B|x| = b, Linear Multilinear Algebra, 2004, 52(6), 421–426 http://dx.doi.org/10.1080/0308108042000220686 Zbl1070.15002
  16. [16] Rohn J., Description of all solutions of a linear complementarity problem, Electron. J. Linear Algebra, 2009, 18, 246–252 Zbl1177.90387
  17. [17] Rohn J., An algorithm for solving the absolute value equation, Electron. J. Linear Algebra, 2009, 18, 589–599 Zbl1189.65082
  18. [18] Rohn J., On unique solvability of the absolute value equation, Optim. Lett., 2009, 3(4), 603–606 http://dx.doi.org/10.1007/s11590-009-0129-6 Zbl1172.90009
  19. [19] Rohn J., A residual existence theorem for linear equations, Optim. Lett., 2010, 4(2), 287–292 http://dx.doi.org/10.1007/s11590-009-0160-7 Zbl1190.90098
  20. [20] Rump S.M., Kleine Fehlerschranken bei Matrixproblemen, Ph.D. thesis, Universität Karlsruhe, 1980 Zbl0437.65036
  21. [21] Rump S.M., New results on verified inclusions, In: Accurate Scientific Computations, Bad Neuenahr, 1985, Lecture Notes in Comput. Sci., 235, Springer, Berlin, 1986, 31–69 
  22. [22] Rump S.M., On the solution of interval linear systems, Computing, 1992, 47(3–4), 337–353 http://dx.doi.org/10.1007/BF02320201 
  23. [23] Rump S.M., Verified solution of large systems and global optimization problems, J. Comput. Appl. Math., 1995, 60(1–2), 201–218 http://dx.doi.org/10.1016/0377-0427(94)00092-F 
  24. [24] Rump S.M., INTLAB-INTerval LABoratory, In: Developments in Reliable Computing, Budapest, September 22–25, 1998, Kluwer, Dordrecht, 1999, 77–104 
  25. [25] Zhang C, Wei Q.J., Global and finite convergence of a generalized Newton method for absolute value equations, J. Optim. Theory Appl., 2009, 143(2), 391–403 http://dx.doi.org/10.1007/s10957-009-9557-9 Zbl1175.90418

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.