Page 1 Next

Displaying 1 – 20 of 89

Showing per page

A further investigation for Egoroff's theorem with respect to monotone set functions

Jun Li (2003)

Kybernetika

In this paper, we investigate Egoroff’s theorem with respect to monotone set function, and show that a necessary and sufficient condition that Egoroff’s theorem remain valid for monotone set function is that the monotone set function fulfill condition (E). Therefore Egoroff’s theorem for non-additive measure is formulated in full generality.

An iterative algorithm for testing solvability of max-min interval systems

Helena Myšková (2012)

Kybernetika

This paper is dealing with solvability of interval systems of linear equations in max-min algebra. Max-min algebra is the algebraic structure in which classical addition and multiplication are replaced by and , where a b = max { a , b } , a b = min { a , b } . The notation 𝔸 x = 𝕓 represents an interval system of linear equations, where 𝔸 = [ A ̲ , A ¯ ] and 𝕓 = [ b ̲ , b ¯ ] are given interval matrix and interval vector, respectively. We can define several types of solvability of interval systems. In this paper, we define the T4 and T5 solvability and give necessary and...

An unusual way of solving linear systems

Gianfranco Cimmino (1986)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Mediante integrali multipli agevoli per il calcolo numerico vengono espressi il valore assoluto di un determinante qualsiasi e le formule di Cramer.

Computation of linear algebraic equations with solvability verification over multi-agent networks

Xianlin Zeng, Kai Cao (2017)

Kybernetika

In this paper, we consider the problem of solving a linear algebraic equation A x = b in a distributed way by a multi-agent system with a solvability verification requirement. In the problem formulation, each agent knows a few columns of A , different from the previous results with assuming that each agent knows a few rows of A and b . Then, a distributed continuous-time algorithm is proposed for solving the linear algebraic equation from a distributed constrained optimization viewpoint. The algorithm is...

Explicit solutions of infinite linear systems associated with group inverse endomorphisms

Fernando Pablos Romo (2022)

Czechoslovak Mathematical Journal

The aim of this note is to offer an algorithm for studying solutions of infinite linear systems associated with group inverse endomorphisms. As particular results, we provide different properties of the group inverse and we characterize EP endomorphisms of arbitrary vector spaces from the coincidence of the group inverse and the Moore-Penrose inverse.

Currently displaying 1 – 20 of 89

Page 1 Next