On q-Szász-Durrmeyer operators

Nazim Mahmudov; Havva Kaffaoğlu

Open Mathematics (2010)

  • Volume: 8, Issue: 2, page 399-409
  • ISSN: 2391-5455

Abstract

top
In the present paper, we introduce the q-Szász-Durrmeyer operators and justify a local approximation result for continuous functions in terms of moduli of continuity. We also discuss a Voronovskaya type result for the q-Szász-Durrmeyer operators.

How to cite

top

Nazim Mahmudov, and Havva Kaffaoğlu. "On q-Szász-Durrmeyer operators." Open Mathematics 8.2 (2010): 399-409. <http://eudml.org/doc/269034>.

@article{NazimMahmudov2010,
abstract = {In the present paper, we introduce the q-Szász-Durrmeyer operators and justify a local approximation result for continuous functions in terms of moduli of continuity. We also discuss a Voronovskaya type result for the q-Szász-Durrmeyer operators.},
author = {Nazim Mahmudov, Havva Kaffaoğlu},
journal = {Open Mathematics},
keywords = {q-Szász-Durrmeyer operators; K-functional; Modulus of continuity; q-calculus; -Szász-Durrmeyer operators; -functional; modulus of continuity; -calculus},
language = {eng},
number = {2},
pages = {399-409},
title = {On q-Szász-Durrmeyer operators},
url = {http://eudml.org/doc/269034},
volume = {8},
year = {2010},
}

TY - JOUR
AU - Nazim Mahmudov
AU - Havva Kaffaoğlu
TI - On q-Szász-Durrmeyer operators
JO - Open Mathematics
PY - 2010
VL - 8
IS - 2
SP - 399
EP - 409
AB - In the present paper, we introduce the q-Szász-Durrmeyer operators and justify a local approximation result for continuous functions in terms of moduli of continuity. We also discuss a Voronovskaya type result for the q-Szász-Durrmeyer operators.
LA - eng
KW - q-Szász-Durrmeyer operators; K-functional; Modulus of continuity; q-calculus; -Szász-Durrmeyer operators; -functional; modulus of continuity; -calculus
UR - http://eudml.org/doc/269034
ER -

References

top
  1. [1] DeVore R.A., Lorentz G.G., Constructive Approximation, Springer Verlag, Berlin, 1993 Zbl0797.41016
  2. [2] Aral A., Gupta V., The q-derivative and applications to q-Szász Mirakyan operators, Calcolo 2006, 43, 151–170 http://dx.doi.org/10.1007/s10092-006-0119-3 Zbl1121.41016
  3. [3] Aral A., A generalization of Szász-Mirakyan operators based on q-integers, Mathematical and Computer Modelling 47, 2008, 9–10, 1052–1062 http://dx.doi.org/10.1016/j.mcm.2007.06.018 Zbl1144.41303
  4. [4] Aral A., Doğru O., Bleimann, Butzer, and Hahn operators based on the q-integers, J. Inequal. Appl., 2007, Art. ID 79410 Zbl1133.41001
  5. [5] Derriennic M.-M., Modifed Bernstein polynomials and Jacobi polynomials in q-calculus, Rendiconti Del Circolo Matematico Di Palermo, Serie II, Suppl. 2005, 76, 269–290 Zbl1142.41002
  6. [6] De Sole A., Kac V., On integral representations of q-gamma and q-beta functions, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 2005, 16, 11–29 Zbl1225.33017
  7. [7] II’inskii A., Ostrovska S., Convergence of generalized Bernstein polynomials, J. Approx. Theory, 2002, 116, 100–112 http://dx.doi.org/10.1006/jath.2001.3657 
  8. [8] Gupta V., Some approximation properties of q-Durrmeyer operators, Appl. Math. Comput., 2008, 197, 172–178 http://dx.doi.org/10.1016/j.amc.2007.07.056 Zbl1142.41008
  9. [9] Finta Z., Gupta V., Approximation by q-Durrmeyer operators, J. Appl. Math. Comput., 2009, 29, 401–415 http://dx.doi.org/10.1007/s12190-008-0141-5 Zbl1198.41008
  10. [10] Gupta V., Wang H., The rate of convergence of q-Durrmeyer operators for 0 < q < 1, Math. Methods Appl. Sci., 2008, 31, 1946–1955 http://dx.doi.org/10.1002/mma.1012 Zbl1154.41008
  11. [11] Mahmudov N.I., Korovkin-type Theorems and Applications, Cent. Eur. J. Math., 2009, 7, 348–356 http://dx.doi.org/10.2478/s11533-009-0006-7 Zbl1179.41024
  12. [12] Mahmudov N.I., The moments for q-Bernstein operators in the case 0 < q < 1; Numer Algorithms, DOI 10.1007/s11075-009-9312-1 Zbl1198.41009
  13. [13] Mahmudov N.I., On q-parametric Szász-Mirakjan operators, preprint 
  14. [14] Mahmudov N.I., Sabancıgil P., q-Parametric Bleimann Butzer and Hahn Operators, Journal of Inequalities and Applications, 2008, Article ID 816367 
  15. [15] Kac V., Cheung P., Quantum Calculus, Universitext, Springer-Verlag, New York, 2002 Zbl0986.05001
  16. [16] Ostrovska S., q-Bernstein polynomials and their iterates, J. Approx. Theory, 2003, 123, 232–255 http://dx.doi.org/10.1016/S0021-9045(03)00104-7 
  17. [17] Ostrovska S., On the Lupaş q-analogue of the Bernstein operator, Rocky Mountain Journal of Mathematics, 2006, 36, 1615–1629 http://dx.doi.org/10.1216/rmjm/1181069386 Zbl1138.41008
  18. [18] Özarslan M.A., Aktuğlu H., Local approximation properties of certain class of linear positive operators via I-convergence, Cent. Eur. J. Math., 2008, 6, 281–286 http://dx.doi.org/10.2478/s11533-008-0125-6 Zbl1148.41004
  19. [19] Phillips G.M., Bernstein polynomials based on the q-integers, Ann. Numer. Math., 1997, 4, 511–518 Zbl0881.41008
  20. [20] Trif T., Meyer-König and Zeller operators based on the q-integers, Rev. Anal. Numer. Theory Approx., 2000, 29, 221–229 
  21. [21] Videnskii V.S., On some classes of q-parametric positive operators, Operator Theory: Advances and Applications, Birkhauser, Basel, 2005, 158, 213–222 http://dx.doi.org/10.1007/3-7643-7340-7_15 Zbl1088.41008
  22. [22] Wang H., Korovkin-type theorem and application, J. Approx. Theory, 2005, 132, 258–264 http://dx.doi.org/10.1016/j.jat.2004.12.010 Zbl1118.41015
  23. [23] Wang, H., Fanjun M., The rate of convergence of q-Bernstein polynomials for 0 < q < 1, J. Approx. Theory, 2005, 136, 151–158 http://dx.doi.org/10.1016/j.jat.2005.07.001 Zbl1082.41007
  24. [24] Wang H., Voronovskaya type formulas and saturation of convergence for q-Bernstein polynomials for 0 < q < 1, J. Approx. Theory, 2007, 145, 182–195 http://dx.doi.org/10.1016/j.jat.2006.08.005 Zbl1112.41016

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.