On integral representations of q -gamma and q -beta functions

Alberto De Sole; Victor G. Kac

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (2005)

  • Volume: 16, Issue: 1, page 11-29
  • ISSN: 1120-6330

Abstract

top
We study q -integral representations of the q -gamma and the q -beta functions. As an application of these integral representations, we obtain a simple conceptual proof of a family of identities for Jacobi triple product, including Jacobi's identity, and of Ramanujan's formula for the bilateral hypergeometric series.

How to cite

top

De Sole, Alberto, and Kac, Victor G.. "On integral representations of $q$-gamma and $q$-beta functions." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 16.1 (2005): 11-29. <http://eudml.org/doc/252391>.

@article{DeSole2005,
abstract = {We study $q$-integral representations of the $q$-gamma and the $q$-beta functions. As an application of these integral representations, we obtain a simple conceptual proof of a family of identities for Jacobi triple product, including Jacobi's identity, and of Ramanujan's formula for the bilateral hypergeometric series.},
author = {De Sole, Alberto, Kac, Victor G.},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {$q$ q -calculus; $q$ q -gamma function; $q$ q -beta function; -calculus; -gamma function; -beta function},
language = {eng},
month = {3},
number = {1},
pages = {11-29},
publisher = {Accademia Nazionale dei Lincei},
title = {On integral representations of $q$-gamma and $q$-beta functions},
url = {http://eudml.org/doc/252391},
volume = {16},
year = {2005},
}

TY - JOUR
AU - De Sole, Alberto
AU - Kac, Victor G.
TI - On integral representations of $q$-gamma and $q$-beta functions
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 2005/3//
PB - Accademia Nazionale dei Lincei
VL - 16
IS - 1
SP - 11
EP - 29
AB - We study $q$-integral representations of the $q$-gamma and the $q$-beta functions. As an application of these integral representations, we obtain a simple conceptual proof of a family of identities for Jacobi triple product, including Jacobi's identity, and of Ramanujan's formula for the bilateral hypergeometric series.
LA - eng
KW - $q$ q -calculus; $q$ q -gamma function; $q$ q -beta function; -calculus; -gamma function; -beta function
UR - http://eudml.org/doc/252391
ER -

References

top
  1. ANDREWS, G.E. - ASKEY, R. - ROY, R., Special functions. Encyclopedia of Mathematics and its Applications, vol. 1, Cambridge University Press, Cambridge1999, 664 pp. Zbl0920.33001MR1688958
  2. EXTON, H., q -hypergeometric functions and applications. Ellis Horwood Series in Mathematics and its Applications, Ellis Horwood Ltd., Chichester1983, 347 pp. Zbl0514.33001MR708496
  3. GASPER, G. - RAHMAN, M., Basic hypergeometric series. Encyclopedia of Mathematics and its Applications, vol. 35, second edition, Cambridge University Press, Cambridge1990, 456 pp. Zbl1129.33005MR1052153
  4. JACKSON, F.H., A generalization of the functions Γ n and x n . Proc. Roy. Soc. London, 74, 1904, 64-72. JFM35.0460.01
  5. JACKSON, F.H., On q -definite integrals. Quart. J. Pure and Applied Math., 41, 1910, 193-203. JFM41.0317.04
  6. KAC, V.G. - CHEUNG, P., Quantum Calculus. Universitext, Springer-Verlag, New York2002, 112 pp. Zbl0986.05001MR1865777DOI10.1007/978-1-4613-0071-7
  7. KAC, V.G., Infinite dimensional Lie algebras. Third edition, Cambridge University Press, Cambridge1990, 400 pp. Zbl0716.17022MR1104219DOI10.1017/CBO9780511626234
  8. KAC, V.G., Vertex algebras for beginners. University Lecture Series, 10, second edition, American Mathematical Society, Providence, RI, 1998, 201 pp. Zbl0861.17017MR1651389
  9. KAC, V.G. - WAKIMOTO, M., Integrable highest weight modules over affine superalgebras and number theory. In: J.-L. BRYLINSKI et al. (eds.), Lie theory and geometry. Progr. Math., 123, Birkhäuser, Boston1994, 415-456. Zbl0854.17028MR1327543
  10. KEMPF, A. - MAJID, S., Algebraic q -integration and Fourier theory on quantum and braided spaces. Journal of Mathematical Physics, 35, 1994, 6802-6837. Zbl0826.17018MR1303081DOI10.1063/1.530644
  11. KOORNWINDER, T.H., q -special functions, a tutorial. Preprint math. CA/9403216, 1994. Zbl0768.33018MR1490602
  12. KOORNWINDER, T.H., Compact quantum groups and q -special functions. In: V. BALDONI - M.A. PICARDELLO (eds.), Representations of Lie groups and quantum groups. Pitman Research Notes in Mathematics Series, 311, Longman Scientific & Technical, 1994, 46-128. Zbl0821.17015MR1431306
  13. KOORNWINDER, T.H., Special functions and q -commuting variables. In: M.E.H. ISMAIL - D.R. MASSON - M. RAHMAN (eds.), Special functions, q -series and related topics (Toronto, ON, 1995). Fields Inst. Commun., vol. 14, Amer. Math. Soc., Providence1997, 131-166. Zbl0882.33014MR1448685
  14. THOMAE, J., Beitrage zur Theorie der durch die Heinesche Reihe. J. reine angew. Math., 70, 1869, 258-281. JFM02.0122.04

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.