Equivariant Morse equation
Open Mathematics (2012)
- Volume: 10, Issue: 6, page 2138-2159
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topMarcin Styborski. "Equivariant Morse equation." Open Mathematics 10.6 (2012): 2138-2159. <http://eudml.org/doc/269047>.
@article{MarcinStyborski2012,
abstract = {The paper is concerned with the Morse equation for flows in a representation of a compact Lie group. As a consequence of this equation we give a relationship between the equivariant Conley index of an isolated invariant set of the flow given by .x = −∇f(x) and the gradient equivariant degree of ∇f. Some multiplicity results are also presented.},
author = {Marcin Styborski},
journal = {Open Mathematics},
keywords = {Morse equation; Conley index; Equivariant gradient degree; Critical orbit; Group action; Poincaré polynomial; Euler ring; equivariant gradient degree; critical orbit},
language = {eng},
number = {6},
pages = {2138-2159},
title = {Equivariant Morse equation},
url = {http://eudml.org/doc/269047},
volume = {10},
year = {2012},
}
TY - JOUR
AU - Marcin Styborski
TI - Equivariant Morse equation
JO - Open Mathematics
PY - 2012
VL - 10
IS - 6
SP - 2138
EP - 2159
AB - The paper is concerned with the Morse equation for flows in a representation of a compact Lie group. As a consequence of this equation we give a relationship between the equivariant Conley index of an isolated invariant set of the flow given by .x = −∇f(x) and the gradient equivariant degree of ∇f. Some multiplicity results are also presented.
LA - eng
KW - Morse equation; Conley index; Equivariant gradient degree; Critical orbit; Group action; Poincaré polynomial; Euler ring; equivariant gradient degree; critical orbit
UR - http://eudml.org/doc/269047
ER -
References
top- [1] Bredon G.E., Introduction to Compact Transformation Groups, Pure Appl. Math., 46, Academic Press, New York-London, 1972 Zbl0246.57017
- [2] Conley C., Isolated Invariant Sets and the Morse Index, CBMS Reg. Conf. Ser. Math., 38, American Mathematical Society, Providence, 1978 [Crossref] Zbl0397.34056
- [3] Conley C., Zehnder E., Morse-type index theory for flows and periodic solutions for Hamiltonian equations, Comm. Pure Appl. Math., 1984, 37(2), 207–253 http://dx.doi.org/10.1002/cpa.3160370204[Crossref] Zbl0559.58019
- [4] tom Dieck T., Transformation Groups, de Gruyter Stud. Math., 8, Walter de Gruyter, Berlin, 1987 http://dx.doi.org/10.1515/9783110858372[Crossref]
- [5] Field M.J., Dynamics and Symmetry, ICP Adv. Texts Math., 3, Imperial College Press, London, 2007
- [6] Floer A., A refinement of the Conley index and an application to the stability of hyperbolic invariant sets, Ergodic Theory Dynam. Systems, 1987, 7(1), 93–103 http://dx.doi.org/10.1017/S0143385700003825[Crossref] Zbl0633.58040
- [7] Floer A., Zehnder E., The equivariant Conley index and bifurcations of periodic solutions of Hamiltonian systems, Ergodic Theory Dynam. Systems, 1988, 8, 87–97 http://dx.doi.org/10.1017/S0143385700009354[Crossref] Zbl0694.58017
- [8] Gęba K., Degree for gradient equivariant maps and equivariant Conley index, In: Topological Nonlinear Analysis II, Frascati, June, 1995, Progr. Nonlinear Differential Equations Appl., 27, Birkhäuser, Boston, 1997, 247–272 Zbl0880.57015
- [9] Gęba K., Rybicki S., Some remarks on the Euler ring U(G), J. Fixed Point Theory Appl., 2008, 3(1), 143–158 http://dx.doi.org/10.1007/s11784-007-0043-4[Crossref] Zbl1153.55012
- [10] Goębiewska A., Rybicki S., Global bifurcations of critical orbits of G-invariant strongly indefinite functionals, Nonlinear Anal., 2011, 74(5), 1823–1834 http://dx.doi.org/10.1016/j.na.2010.10.055[Crossref][WoS]
- [11] Hatcher A., Algebraic Topology, Cambridge University Press, Cambridge, 2002
- [12] Illman S., Equivariant singular homology and cohomology for actions of compact Lie groups, Proceedings of the Second Conference on Compact Transformation Groups, Amherst, June 7–18, 1971, Lecture Notes in Math., 298, Springer, Berlin, 1972, 403–415 http://dx.doi.org/10.1007/BFb0070055[Crossref]
- [13] Izydorek M., Equivariant Conley index in Hilbert spaces and applications to strongly indefinite problems, Nonlinear Anal., 2002, 51(1), Ser. A: Theory Methods, 33–66 Zbl1035.37009
- [14] Izydorek M., Styborski M., Morse inequalities via Conley index theory, In: Topological Methods in Nonlinear Analysis, Torun, February 9–13, 2009, Lect. Notes Nonlinear Anal., 12, Juliusz Schauder Center for Nonlinear Studies, Torun, 2011
- [15] Kawakubo K., The Theory of Transformation Groups, Clarendon Press, Oxford University Press, New York, 1991 Zbl0744.57001
- [16] Razvan M.R., On Conley’s fundamental theorem of dynamical systems, Int. J. Math. Math. Sci., 2004, 25–28, 1397–1401 http://dx.doi.org/10.1155/S0161171204202125[Crossref] Zbl1068.37008
- [17] Ruan H., Rybicki S., Applications of equivariant degree for gradient maps to symmetric Newtonian systems, Nonlinear Anal., 2008, 68(6), 1479–1516 http://dx.doi.org/10.1016/j.na.2006.12.039[Crossref][WoS]
- [18] Rybakowski K.P., The Homotopy Index and Partial Differential Equations, Universitext, Springer, Berlin, 1987 http://dx.doi.org/10.1007/978-3-642-72833-4[Crossref]
- [19] Rybicki S., A degree for S 1-equivariant orthogonal maps and its applications to bifurcation theory, Nonlinear Anal., 1994, 23(1), 83–102 http://dx.doi.org/10.1016/0362-546X(94)90253-4[Crossref]
- [20] Rybicki S., Degree for equivariant gradient maps, Milan J. Math., 2005, 73, 103–144 http://dx.doi.org/10.1007/s00032-005-0040-2[Crossref] Zbl1116.58009
- [21] Spanier E.H., Algebraic Topology, McGraw-Hill, New York-Toronto, 1966
- [22] Styborski M., Topological Invariants for Equivariant Flows: Conley Index and Degree, PhD thesis, Polish Academy of Sciences, Warsaw, 2009
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.