Concave iteration semigroups of linear continuous set-valued functions

Andrzej Smajdor; Wilhelmina Smajdor

Open Mathematics (2012)

  • Volume: 10, Issue: 6, page 2272-2282
  • ISSN: 2391-5455

Abstract

top
Let F t: t ≥ 0 be a concave iteration semigroup of linear continuous set-valued functions defined on a convex cone K with nonempty interior in a Banach space X with values in cc(K). If we assume that the Hukuhara differences F 0(x) − F t (x) exist for x ∈ K and t > 0, then D t F t (x) = (−1)F t ((−1)G(x)) for x ∈ K and t ≥ 0, where D t F t (x) denotes the derivative of F t (x) with respect to t and G ( x ) = lim s 0 F 0 x - F s x F 0 x - F s x - s - s for x ∈ K.

How to cite

top

Andrzej Smajdor, and Wilhelmina Smajdor. "Concave iteration semigroups of linear continuous set-valued functions." Open Mathematics 10.6 (2012): 2272-2282. <http://eudml.org/doc/269048>.

@article{AndrzejSmajdor2012,
abstract = {Let F t: t ≥ 0 be a concave iteration semigroup of linear continuous set-valued functions defined on a convex cone K with nonempty interior in a Banach space X with values in cc(K). If we assume that the Hukuhara differences F 0(x) − F t (x) exist for x ∈ K and t > 0, then D t F t (x) = (−1)F t ((−1)G(x)) for x ∈ K and t ≥ 0, where D t F t (x) denotes the derivative of F t (x) with respect to t and \[G(x) = \mathop \{\lim \}\limits \_\{s \rightarrow 0\} \{\{\left( \{F^0 \left( x \right) - F^s \left( x \right)\} \right)\} \mathord \{\left\bad. \{\vphantom\{\{\left( \{F^0 \left( x \right) - F^s \left( x \right)\} \right)\} \{\left( \{ - s\} \right)\}\}\} \right. \hspace\{0.0pt\}\} \{\left( \{ - s\} \right)\}\}\] for x ∈ K.},
author = {Andrzej Smajdor, Wilhelmina Smajdor},
journal = {Open Mathematics},
keywords = {Concave iteration semigroup; Derivatives of set-valued functions; Riemann integral of set-valued functions; concave iteration semigroup; derivatives of set-valued functions},
language = {eng},
number = {6},
pages = {2272-2282},
title = {Concave iteration semigroups of linear continuous set-valued functions},
url = {http://eudml.org/doc/269048},
volume = {10},
year = {2012},
}

TY - JOUR
AU - Andrzej Smajdor
AU - Wilhelmina Smajdor
TI - Concave iteration semigroups of linear continuous set-valued functions
JO - Open Mathematics
PY - 2012
VL - 10
IS - 6
SP - 2272
EP - 2282
AB - Let F t: t ≥ 0 be a concave iteration semigroup of linear continuous set-valued functions defined on a convex cone K with nonempty interior in a Banach space X with values in cc(K). If we assume that the Hukuhara differences F 0(x) − F t (x) exist for x ∈ K and t > 0, then D t F t (x) = (−1)F t ((−1)G(x)) for x ∈ K and t ≥ 0, where D t F t (x) denotes the derivative of F t (x) with respect to t and \[G(x) = \mathop {\lim }\limits _{s \rightarrow 0} {{\left( {F^0 \left( x \right) - F^s \left( x \right)} \right)} \mathord {\left\bad. {\vphantom{{\left( {F^0 \left( x \right) - F^s \left( x \right)} \right)} {\left( { - s} \right)}}} \right. \hspace{0.0pt}} {\left( { - s} \right)}}\] for x ∈ K.
LA - eng
KW - Concave iteration semigroup; Derivatives of set-valued functions; Riemann integral of set-valued functions; concave iteration semigroup; derivatives of set-valued functions
UR - http://eudml.org/doc/269048
ER -

References

top
  1. [1] Berge C., Topological Spaces, Oliver and Boyd, Edinburgh-London, 1963 
  2. [2] Dinghas A., Zum Minkowskischen Integralbegriff abgeschlossener Mengen, Math. Z., 1956, 66, 173–188 http://dx.doi.org/10.1007/BF01186606[Crossref] 
  3. [3] Edgar G.A., Measure, Topology, and Fractal Geometry, Undergrad. Texts Math., Springer, New York, 1990 [Crossref] 
  4. [4] Hukuhara M., Intégration des applications mesurables dont la valeur est un compact convexe, Funkcial. Ekvac., 1967, 10, 205–223 Zbl0161.24701
  5. [5] Kwiecinska G., On the intermediate value property of multivalued functions, Real Anal. Exchange, 2000/2001, 26(1), 245–260 Zbl1018.26020
  6. [6] Nikodem K., On concave and midpoint concave set-valued functions, Glasnik Mat., 1987, 22(42)(1), 69–76 Zbl0642.39006
  7. [7] Nikodem K., On Jensenś functional equation for set-valued functions, Rad. Mat., 1987, 3(1), 23–33 Zbl0628.39013
  8. [8] Olko J., Concave iteration semigroups of linear set-valued functions, Ann. Polon. Math., 1999, 71(1), 31–38 Zbl0969.47030
  9. [9] Piszczek M., Integral representations of convex and concave set-valued functions, Demonstratio Math., 2002, 35(4), 727–742 Zbl1025.28005
  10. [10] Piszczek M., Second Hukuhara derivative and cosine family of linear set-valued functions, Ann. Acad. Pedagog. Crac. Stud. Math., 2006, 5, 87–98 Zbl1156.26308
  11. [11] Piszczek M., On multivalued iteration semigroups, Aequationes Math., 2011, 81(1–2), 97–108 http://dx.doi.org/10.1007/s00010-010-0034-1[Crossref] Zbl1213.26030
  12. [12] Rådström H., An embedding theorem for spaces of convex sets, Proc. Amer. Math. Soc., 1952, 3(1), 165–169 http://dx.doi.org/10.2307/2032477[Crossref] 
  13. [13] Smajdor A., On regular multivalued cosine families, Ann. Math. Sil., 1999, 13, 271–280 Zbl0946.39013
  14. [14] Smajdor A., Hukuharaś derivative and concave iteration semigrups of linear set-valued functions, J. Appl. Anal., 2002, 8(2), 297–305 http://dx.doi.org/10.1515/JAA.2002.297[Crossref] 
  15. [15] Smajdor A., On concave iteration semigroups of linear set-valued functions, Aequationes Math., 2008, 75(1–2), 149–162 http://dx.doi.org/10.1007/s00010-007-2876-8[Crossref] Zbl1148.39020

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.