Concave iteration semigroups of linear continuous set-valued functions
Andrzej Smajdor; Wilhelmina Smajdor
Open Mathematics (2012)
- Volume: 10, Issue: 6, page 2272-2282
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topAndrzej Smajdor, and Wilhelmina Smajdor. "Concave iteration semigroups of linear continuous set-valued functions." Open Mathematics 10.6 (2012): 2272-2282. <http://eudml.org/doc/269048>.
@article{AndrzejSmajdor2012,
abstract = {Let F t: t ≥ 0 be a concave iteration semigroup of linear continuous set-valued functions defined on a convex cone K with nonempty interior in a Banach space X with values in cc(K). If we assume that the Hukuhara differences F 0(x) − F t (x) exist for x ∈ K and t > 0, then D t F t (x) = (−1)F t ((−1)G(x)) for x ∈ K and t ≥ 0, where D t F t (x) denotes the derivative of F t (x) with respect to t and \[G(x) = \mathop \{\lim \}\limits \_\{s \rightarrow 0\} \{\{\left( \{F^0 \left( x \right) - F^s \left( x \right)\} \right)\} \mathord \{\left\bad. \{\vphantom\{\{\left( \{F^0 \left( x \right) - F^s \left( x \right)\} \right)\} \{\left( \{ - s\} \right)\}\}\} \right. \hspace\{0.0pt\}\} \{\left( \{ - s\} \right)\}\}\]
for x ∈ K.},
author = {Andrzej Smajdor, Wilhelmina Smajdor},
journal = {Open Mathematics},
keywords = {Concave iteration semigroup; Derivatives of set-valued functions; Riemann integral of set-valued functions; concave iteration semigroup; derivatives of set-valued functions},
language = {eng},
number = {6},
pages = {2272-2282},
title = {Concave iteration semigroups of linear continuous set-valued functions},
url = {http://eudml.org/doc/269048},
volume = {10},
year = {2012},
}
TY - JOUR
AU - Andrzej Smajdor
AU - Wilhelmina Smajdor
TI - Concave iteration semigroups of linear continuous set-valued functions
JO - Open Mathematics
PY - 2012
VL - 10
IS - 6
SP - 2272
EP - 2282
AB - Let F t: t ≥ 0 be a concave iteration semigroup of linear continuous set-valued functions defined on a convex cone K with nonempty interior in a Banach space X with values in cc(K). If we assume that the Hukuhara differences F 0(x) − F t (x) exist for x ∈ K and t > 0, then D t F t (x) = (−1)F t ((−1)G(x)) for x ∈ K and t ≥ 0, where D t F t (x) denotes the derivative of F t (x) with respect to t and \[G(x) = \mathop {\lim }\limits _{s \rightarrow 0} {{\left( {F^0 \left( x \right) - F^s \left( x \right)} \right)} \mathord {\left\bad. {\vphantom{{\left( {F^0 \left( x \right) - F^s \left( x \right)} \right)} {\left( { - s} \right)}}} \right. \hspace{0.0pt}} {\left( { - s} \right)}}\]
for x ∈ K.
LA - eng
KW - Concave iteration semigroup; Derivatives of set-valued functions; Riemann integral of set-valued functions; concave iteration semigroup; derivatives of set-valued functions
UR - http://eudml.org/doc/269048
ER -
References
top- [1] Berge C., Topological Spaces, Oliver and Boyd, Edinburgh-London, 1963
- [2] Dinghas A., Zum Minkowskischen Integralbegriff abgeschlossener Mengen, Math. Z., 1956, 66, 173–188 http://dx.doi.org/10.1007/BF01186606[Crossref]
- [3] Edgar G.A., Measure, Topology, and Fractal Geometry, Undergrad. Texts Math., Springer, New York, 1990 [Crossref]
- [4] Hukuhara M., Intégration des applications mesurables dont la valeur est un compact convexe, Funkcial. Ekvac., 1967, 10, 205–223 Zbl0161.24701
- [5] Kwiecinska G., On the intermediate value property of multivalued functions, Real Anal. Exchange, 2000/2001, 26(1), 245–260 Zbl1018.26020
- [6] Nikodem K., On concave and midpoint concave set-valued functions, Glasnik Mat., 1987, 22(42)(1), 69–76 Zbl0642.39006
- [7] Nikodem K., On Jensenś functional equation for set-valued functions, Rad. Mat., 1987, 3(1), 23–33 Zbl0628.39013
- [8] Olko J., Concave iteration semigroups of linear set-valued functions, Ann. Polon. Math., 1999, 71(1), 31–38 Zbl0969.47030
- [9] Piszczek M., Integral representations of convex and concave set-valued functions, Demonstratio Math., 2002, 35(4), 727–742 Zbl1025.28005
- [10] Piszczek M., Second Hukuhara derivative and cosine family of linear set-valued functions, Ann. Acad. Pedagog. Crac. Stud. Math., 2006, 5, 87–98 Zbl1156.26308
- [11] Piszczek M., On multivalued iteration semigroups, Aequationes Math., 2011, 81(1–2), 97–108 http://dx.doi.org/10.1007/s00010-010-0034-1[Crossref] Zbl1213.26030
- [12] Rådström H., An embedding theorem for spaces of convex sets, Proc. Amer. Math. Soc., 1952, 3(1), 165–169 http://dx.doi.org/10.2307/2032477[Crossref]
- [13] Smajdor A., On regular multivalued cosine families, Ann. Math. Sil., 1999, 13, 271–280 Zbl0946.39013
- [14] Smajdor A., Hukuharaś derivative and concave iteration semigrups of linear set-valued functions, J. Appl. Anal., 2002, 8(2), 297–305 http://dx.doi.org/10.1515/JAA.2002.297[Crossref]
- [15] Smajdor A., On concave iteration semigroups of linear set-valued functions, Aequationes Math., 2008, 75(1–2), 149–162 http://dx.doi.org/10.1007/s00010-007-2876-8[Crossref] Zbl1148.39020
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.