New semi-Hamiltonian hierarchy related to integrable magnetic flows on surfaces
Open Mathematics (2012)
- Volume: 10, Issue: 5, page 1596-1604
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] Bialy M., On periodic solutions for a reduction of Benney chain, NoDEA Nonlinear Differential Equations Appl., 2009, 16(6), 731–743 http://dx.doi.org/10.1007/s00030-009-0032-y Zbl1182.35014
- [2] Bialy M., Integrable geodesic flows on surfaces, Geom. Funct. Anal., 2010, 20(2), 357–367 http://dx.doi.org/10.1007/s00039-010-0069-4 Zbl1203.37092
- [3] Bialy M., Richness or semi-Hamiltonicity of quasi-linear systems which are not in evolution form, preprint available at http://arxiv.org/abs/1101.5897
- [4] Bialy M., Mironov A.E., Rich quasi-linear system for integrable geodesic flows on 2-torus, Discrete Contin. Dyn. Syst., 2011, 29(1), 81–90 http://dx.doi.org/10.3934/dcds.2011.29.81 Zbl1232.37035
- [5] Bialy M., Mironov A.E., Cubic and quartic integrals for geodesic flow on 2-torus via system of hydrodynamic type, Nonlinearity, 2011, 24(12), 3541–3554 http://dx.doi.org/10.1088/0951-7715/24/12/010 Zbl1232.35092
- [6] Bolotin S.V., First integrals of systems with gyroscopic forces, Vestnik Moskov. Univ. Ser. I Mat. Mekh., 1984, 6, 75–82 (in Russian)
- [7] Dubrovin B.A., Novikov S.P., Hydrodynamics of weakly deformed soliton lattices. Differential geometry and Hamiltonian theory, Russian Math. Surveys, 1989, 44(6), 35–124 http://dx.doi.org/10.1070/RM1989v044n06ABEH002300 Zbl0712.58032
- [8] Gibbons J., Tsarev S.P., Reductions of the Benney equations, Phys. Lett. A, 1996, 211(1), 19–24 http://dx.doi.org/10.1016/0375-9601(95)00954-X Zbl1072.35588
- [9] Kozlov V.V., Symmetries, Topology, and Resonances in Hamiltonian Mechanics, Ergeb. Math. Grenzgeb., 31, Springer, Berlin, 1996 Zbl0921.58029
- [10] Mokhov O.I., Ferapontov E.V., Nonlocal Hamiltonian operators of hydrodynamic type that are connected with metrics of constant curvature, Russian Math. Surveys, 1990, 45(3), 218–219 http://dx.doi.org/10.1070/RM1990v045n03ABEH002351 Zbl0712.35080
- [11] Pavlov M.V., Tsarev S.P., Tri-Hamiltonian structures of Egorov systems of hydrodynamic type, Funct. Anal. Appl., 2003, 37(1), 32–45 http://dx.doi.org/10.1023/A:1022971910438 Zbl1019.37048
- [12] Sévennec B., Géométrie des Systèmes Hyperboliques de Lois de Conservation, Mém. Soc. Math. France (N.S.), 56, Société Mathématique de France, Marseille, 1994
- [13] Ten V.V., Polynomial first integrals of systems with gyroscopic forces, Math. Notes, 2000, 68(1–2), 135–138 Zbl0995.37043
- [14] Tsarev S.P., The geometry of Hamiltonian systems of hydrodynamic type. The generalized hodograph method, Math. USSR-Izv., 1991, 37(2), 397–419 http://dx.doi.org/10.1070/IM1991v037n02ABEH002069 Zbl0796.76014