A finite difference approach for the initial-boundary value problem of the fractional Klein-Kramers equation in phase space
Open Mathematics (2012)
- Volume: 10, Issue: 1, page 101-115
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] Barkai E., Silbey R.J., Fractional Kramers equation, Journal of Physical Chemistry B, 2000, 104(16), 3866–3874 http://dx.doi.org/10.1021/jp993491m
- [2] Bicout D.J., Berezhkovskii A.M., Szabo A., Irreversible bimolecular reactions of Langevin particles, J. Chem. Phys., 2001, 114(5), 2293–2303 http://dx.doi.org/10.1063/1.1332807
- [3] Cartling B., Kinetics of activated processes from nonstationary solutions of the Fokker-Planck equation for a bistable potential, J. Chem. Phys., 1987, 87(5), 2638–2648 http://dx.doi.org/10.1063/1.453102
- [4] Chen S., Liu F., Zhuang P., Anh V., Finite difference approximations for the fractional Fokker-Planck equation, Appl. Math. Model., 2009, 33(1), 256–273 http://dx.doi.org/10.1016/j.apm.2007.11.005 Zbl1167.65419
- [5] Coffey W.T., Kalmykov Y.P., Titov S.V., Inertial effects in anomalous dielectric relaxation, Journal of Molecular Liquids, 2004, 114, 35–41 http://dx.doi.org/10.1016/j.molliq.2004.02.004
- [6] Coffey W.T., Kalmykov Y.P., Titov S.V., Anomalous dielectric relaxation in a double-well potential, Journal of Molecular Liquids, 2004, 114, 43–49 http://dx.doi.org/10.1016/j.molliq.2004.02.005
- [7] Deng W., Li C., Finite difference methods and their physical constrains for the fractional Klein-Kramers equation, Numer. Methods Partial Differential Equations, 2011, 27(6), 1561–1583 http://dx.doi.org/10.1002/num.20596 Zbl1233.65052
- [8] Dieterich P., Klages R., Preuss R., Schwab A., Anomalous dynamics of cell migration, Proc. Natl. Acad. Sci. USA, 2008, 105(2), 459–463 http://dx.doi.org/10.1073/pnas.0707603105
- [9] Gao G.-H., Sun Z.-Z., A compact finite difference scheme for the fractional sub-diffusion equations, J. Comput. Phys., 2011, 230(3), 586–595 http://dx.doi.org/10.1016/j.jcp.2010.10.007 Zbl1211.65112
- [10] Hadeler K.P., Hillen T., Lutscher F., The Langevin or Kramers approach to biological modeling, Math. Models Methods Appl. Sci., 2004, 14(10), 1561–1583 http://dx.doi.org/10.1142/S0218202504003726 Zbl1057.92012
- [11] Kalmykov Y.P., Coffey W.T., Titov S.V., Thermally activated escape rate for a Brownian particle in a double-well potential for all values of the dissipation, J. Chem. Phys., 2006, 124(2), #024107 http://dx.doi.org/10.1063/1.2140281
- [12] Kramers H.A., Brownian motion in a field of force and the diffusion model of chemical reactions, Phys., 1940, 7, 284–304 Zbl0061.46405
- [13] Magdziarz M., Weron A., Numerical approach to the fractional Klein-Kramers equation, Phys. Rev. E, 2007, 76(6), #066708 http://dx.doi.org/10.1103/PhysRevE.76.066708 Zbl1123.60045
- [14] Marshall T.W., Watson E.J., A drop of ink falls from my pen... it comes to earth, I know not when, J. Phys. A, 1985, 18(18), 3531–3559 http://dx.doi.org/10.1088/0305-4470/18/18/016
- [15] Metzler R., Klafter J., From a generalized Chapman-Kolmogorov equation to the fractional Klein-Kramers equation, Journal of Physical Chemistry B, 2000, 104(16), 3851–3857 http://dx.doi.org/10.1021/jp9934329
- [16] Metzler R., Klafter J., Subdiffusive transport close to thermal equilibrium: from the Langevin equation to fractional diffusion, Phys. Rev. E, 2000, 61(6), 6308–6311 http://dx.doi.org/10.1103/PhysRevE.61.6308
- [17] Metzler R., Sokolov I.M., Superdiffusive Klein-Kramers equation: normal and anomalous time evolution and Lévy walk moments, Europhys. Lett., 2002, 58(4), 482–488 http://dx.doi.org/10.1209/epl/i2002-00421-1
- [18] Podlubny I., Fractional Differential Equations, Math. Sci. Engrg., 198, Academic Press, San Diego, 1999
- [19] Rice S.O., Mathematical analysis of random noise, Bell System Tech. J., 1945, 24, 46–156 Zbl0063.06487
- [20] Selinger J.V., Titulaer U.M., The kinetic boundary layer for the Klein-Kramers equation; a new numerical approach, J. Statist. Phys., 1984, 36(3–4), 293–319 http://dx.doi.org/10.1007/BF01010986 Zbl0604.76069
- [21] Sun Z.-Z., Wu X., A fully discrete difference scheme for a diffusion-wave system, Appl. Numer. Math., 2006, 56(2), 193–209 http://dx.doi.org/10.1016/j.apnum.2005.03.003 Zbl1094.65083
- [22] Trahan C.J., Wyatt R.E., Classical and quantum phase space evolution: fixed-lattice and trajectory solutions, Chem. Phys. Lett., 2004, 385(3–4), 280–285 http://dx.doi.org/10.1016/j.cplett.2003.12.051
- [23] Trahan C.J., Wyatt R.E., Evolution of classical and quantum phase-space distributions: A new trajectory approach for phase space hydrodynamics, J. Chem. Phys., 2003, 119(14), 7017–7029 http://dx.doi.org/10.1063/1.1607315
- [24] Wang M.C., Uhlenbeck G.E., On the theory of the Brownian motion. II, Rev. Modern Phys., 1945, 17(2–3), 323–342 http://dx.doi.org/10.1103/RevModPhys.17.323
- [25] Widder M.E., Titulaer U.M., Kinetic boundary layers in gas mixtures: systems described by nonlinearly coupled kinetic and hydrodynamic equations and applications to droplet condensation and evaporation, J. Stat. Phys., 1993, 70(5–6), 1255–1279 http://dx.doi.org/10.1007/BF01049431 Zbl0941.76579
- [26] Zambelli S., Chemical kinetics and diffusion approach: the history of the Klein-Kramers equation, Arch. Hist. Exact Sci., 2010, 64(4), 395–428 http://dx.doi.org/10.1007/s00407-010-0059-9 Zbl1204.01020
- [27] Zhuang P., Liu F., Anh V., Turner I., New solution and analytical techniques of the implicit numerical method for the anomalous subdiffusion equation, SIAM J. Numer. Anal., 2008, 46(2), 1079–1095 http://dx.doi.org/10.1137/060673114 Zbl1173.26006