Invariants and Bonnet-type theorem for surfaces in ℝ4

Georgi Ganchev; Velichka Milousheva

Open Mathematics (2010)

  • Volume: 8, Issue: 6, page 993-1008
  • ISSN: 2391-5455

Abstract

top
In the tangent plane at any point of a surface in the four-dimensional Euclidean space we consider an invariant linear map ofWeingarten-type and find a geometrically determined moving frame field. Writing derivative formulas of Frenet-type for this frame field, we obtain eight invariant functions. We prove a fundamental theorem of Bonnet-type, stating that these eight invariants under some natural conditions determine the surface up to a motion. We show that the basic geometric classes of surfaces in the four-dimensional Euclidean space, determined by conditions on their invariants, can be interpreted in terms of the properties of two geometric figures: the tangent indicatrix, which is a conic in the tangent plane, and the normal curvature ellipse. We construct a family of surfaces with flat normal connection.

How to cite

top

Georgi Ganchev, and Velichka Milousheva. "Invariants and Bonnet-type theorem for surfaces in ℝ4." Open Mathematics 8.6 (2010): 993-1008. <http://eudml.org/doc/269071>.

@article{GeorgiGanchev2010,
abstract = {In the tangent plane at any point of a surface in the four-dimensional Euclidean space we consider an invariant linear map ofWeingarten-type and find a geometrically determined moving frame field. Writing derivative formulas of Frenet-type for this frame field, we obtain eight invariant functions. We prove a fundamental theorem of Bonnet-type, stating that these eight invariants under some natural conditions determine the surface up to a motion. We show that the basic geometric classes of surfaces in the four-dimensional Euclidean space, determined by conditions on their invariants, can be interpreted in terms of the properties of two geometric figures: the tangent indicatrix, which is a conic in the tangent plane, and the normal curvature ellipse. We construct a family of surfaces with flat normal connection.},
author = {Georgi Ganchev, Velichka Milousheva},
journal = {Open Mathematics},
keywords = {Surfaces in the four-dimensional Euclidean space; Weingarten map; Tangent indicatrix; Normal curvature ellipse; Fundamental theorem of Bonnet-type; tangent indicatrix; normal curvature ellipse; fundamental theorem of Bonnet-type},
language = {eng},
number = {6},
pages = {993-1008},
title = {Invariants and Bonnet-type theorem for surfaces in ℝ4},
url = {http://eudml.org/doc/269071},
volume = {8},
year = {2010},
}

TY - JOUR
AU - Georgi Ganchev
AU - Velichka Milousheva
TI - Invariants and Bonnet-type theorem for surfaces in ℝ4
JO - Open Mathematics
PY - 2010
VL - 8
IS - 6
SP - 993
EP - 1008
AB - In the tangent plane at any point of a surface in the four-dimensional Euclidean space we consider an invariant linear map ofWeingarten-type and find a geometrically determined moving frame field. Writing derivative formulas of Frenet-type for this frame field, we obtain eight invariant functions. We prove a fundamental theorem of Bonnet-type, stating that these eight invariants under some natural conditions determine the surface up to a motion. We show that the basic geometric classes of surfaces in the four-dimensional Euclidean space, determined by conditions on their invariants, can be interpreted in terms of the properties of two geometric figures: the tangent indicatrix, which is a conic in the tangent plane, and the normal curvature ellipse. We construct a family of surfaces with flat normal connection.
LA - eng
KW - Surfaces in the four-dimensional Euclidean space; Weingarten map; Tangent indicatrix; Normal curvature ellipse; Fundamental theorem of Bonnet-type; tangent indicatrix; normal curvature ellipse; fundamental theorem of Bonnet-type
UR - http://eudml.org/doc/269071
ER -

References

top
  1. [1] Asperti A.C., Some generic properties of Riemannian immersions, Bol. Soc. Brasil. Mat., 1980, 11(2), 191–216 http://dx.doi.org/10.1007/BF02584637 Zbl0573.53029
  2. [2] Burstall F., Ferus D., Leschke K., Pedit F., Pinkall U., Conformal Geometry of Surfaces in S 4 and Quaternions, Lecture Notes in Math., 1772, Springer, New York, 2002 Zbl1033.53001
  3. [3] Chen B.-Y., Geometry of Submanifolds, Pure and Applied Mathematics, 22, Marcel Dekker, New York, 1973 
  4. [4] Chen B.-Y., Classification of Wintgen ideal surfaces in Euclidean 4-space with equal Gauss and normal curvatures, Ann. Global Anal. Geom., 2010, 38(2), 145–160 http://dx.doi.org/10.1007/s10455-010-9205-5 Zbl1203.53005
  5. [5] Dajczer M., Tojeiro R., All superconformal surfaces in ℝ4 in terms of minimal surfaces, Math. Z., 2009, 261(4), 869–890 http://dx.doi.org/10.1007/s00209-008-0355-0 Zbl1163.53035
  6. [6] Eisenhart L.P., Minimal surfaces in Euclidean four-space, Amer. J. Math., 1912, 34(3), 215–236 http://dx.doi.org/10.2307/2370220 Zbl43.0732.01
  7. [7] Ganchev G., Milousheva V., On the theory of surfaces in the four-dimensional Euclidean space, Kodai Math. J., 2008, 31(2), 183–198 http://dx.doi.org/10.2996/kmj/1214442794 Zbl1165.53003
  8. [8] Ganchev G., Milousheva V., Invariants of lines on surfaces in ℝ4, C. R. Acad. Bulgare Sci., 2010, 63(6), 835–842 Zbl1224.53013
  9. [9] Ganchev G., Milousheva V., Minimal surfaces in the four-dimensional Euclidean space preprint available at http://arxiv.org/abs/0806.3334v1 Zbl1296.53033
  10. [10] Garcia R., Sotomayor J., Lines of axial curvatures on surfaces immersed in ℝ4, Differential Geom. Appl., 2000, 12(3), 253–269 http://dx.doi.org/10.1016/S0926-2245(00)00015-2 
  11. [11] Gheysens L., Verheyen P., Verstraelen L., Sur les surfaces A ou les surfaces de Chen, C. R. Acad. Sci. Paris, Sér. I Math., 1981, 292(19), 913–916 
  12. [12] Gheysens L., Verheyen P., Verstraelen L., Characterization and examples of Chen submanifolds, J. Geom., 1983, 20(1), 47–62 http://dx.doi.org/10.1007/BF01917994 Zbl0518.53023
  13. [13] Guadalupe I.V., Rodriguez L., Normal curvature of surfaces in space forms, Pacific J. Math., 1983, 106(1), 95–103 Zbl0515.53044
  14. [14] Kommerell K., Riemannsche Flächen im ebenen Raum von vier Dimensionen, Math. Ann., 1905, 60(4), 546–596 http://dx.doi.org/10.1007/BF01561096 
  15. [15] Little J.A., On singularities of submanifolds of higher dimensional Euclidean spaces, Ann. Mat. Pura Appl., 1969, 83, 261–335 http://dx.doi.org/10.1007/BF02411172 Zbl0187.18903
  16. [16] Mello L.F., Orthogonal asymptotic lines on surfaces immersed in ℝ4, Rocky Mountain J. Math., 2009, 39(5), 1597–1612 http://dx.doi.org/10.1216/RMJ-2009-39-5-1597 Zbl1178.53006
  17. [17] Petrović-Torgašev M., Verstraelen L., On Deszcz symmetries of Wintgen ideal submanifolds, Arch. Math. (Brno), 2008, 44(1), 57–67 Zbl1212.53028
  18. [18] Schouten J.A., Struik D.J., Einführung in die Neueren Methoden der Differentialgeometrie II, Noordhoff, Batavia-Groningen, 1938 Zbl0019.18301
  19. [19] Spivak M., Introduction to Comprehensive Differential Geometry, vol. I, V, 3rd ed., Publish or Perish, Berkeley, 1999 
  20. [20] Wilson E.B., Moore C.L.E., A general theory of surfaces, Proc. Nat. Acad. Sci. U.S.A., 1916, 2(5), 273–278 http://dx.doi.org/10.1073/pnas.2.5.273 
  21. [21] Wilson E.B., Moore C.L.E., Differential geometry of two-dimensional surfaces in hyperspaces, Proc. Am. Acad. Arts Sci., 1916, 52, 269–368 
  22. [22] Wintgen P., Sur l’inégalité de Chen-Willmore, C. R. Acad. Sci. Paris Sér. A, 1979, 288(21), 993–995 
  23. [23] Wong Y.-C., A new curvature theory for surfaces in a Euclidean 4-space, Comment. Math. Helv., 1952, 26(1), 152–170 http://dx.doi.org/10.1007/BF02564298 Zbl0048.15102

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.