On Deszcz symmetries of Wintgen ideal submanifolds
Miroslava Petrović-Torgašev; Leopold C. A. Verstraelen
Archivum Mathematicum (2008)
- Volume: 044, Issue: 1, page 57-67
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topPetrović-Torgašev, Miroslava, and Verstraelen, Leopold C. A.. "On Deszcz symmetries of Wintgen ideal submanifolds." Archivum Mathematicum 044.1 (2008): 57-67. <http://eudml.org/doc/250441>.
@article{Petrović2008,
abstract = {It was conjectured in [26] that, for all submanifolds $M^n$ of all real space forms $\tilde\{M\}^\{n+m\}(c)$, the Wintgen inequality $\rho \le H^2 - \rho ^\perp + c$ is valid at all points of $M$, whereby $\rho $ is the normalised scalar curvature of the Riemannian manifold $M$ and $H^2$, respectively $\rho ^\perp $, are the squared mean curvature and the normalised scalar normal curvature of the submanifold $M$ in the ambient space $\tilde\{M\}$, and this conjecture was shown there to be true whenever codimension $m = 2$. For a given Riemannian manifold $M$, this inequality can be interpreted as follows: for all possible isometric immersions of $M^n$ in space forms $\tilde\{M\}^\{n+m\}(c)$, the value of the intrinsic scalar curvature $\rho $ of $M$ puts a lower bound to all possible values of the extrinsic curvature $H^2 - \rho ^\perp + c$ that $M$ in any case can not avoid to “undergo” as a submanifold of $\tilde\{M\}$. And, from this point of view, then $M$ is called a Wintgen ideal submanifold when it actually is able to achieve a realisation in $\tilde\{M\}$ such that this extrinsic curvature indeed everywhere assumes its theoretically smallest possible value as given by its normalised scalar curvature. For codimension $m = 2$ and dimension $n > 3$, we will show that the submanifolds $M$ which realise such minimal extrinsic curvatures in $\tilde\{M\}$ do intrinsically enjoy some curvature symmetries in the sense of Deszcz of their Riemann-Christoffel curvature tensor, of their Ricci curvature tensor and of their conformal curvature tensor of Weyl, which properties will be described mainly following [20].},
author = {Petrović-Torgašev, Miroslava, Verstraelen, Leopold C. A.},
journal = {Archivum Mathematicum},
keywords = {submanifolds; Wintgen inequality; ideal submanifolds; Deszcz symmetries; Wintgen inequality; ideal submanifold; Deszcz symmetry},
language = {eng},
number = {1},
pages = {57-67},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {On Deszcz symmetries of Wintgen ideal submanifolds},
url = {http://eudml.org/doc/250441},
volume = {044},
year = {2008},
}
TY - JOUR
AU - Petrović-Torgašev, Miroslava
AU - Verstraelen, Leopold C. A.
TI - On Deszcz symmetries of Wintgen ideal submanifolds
JO - Archivum Mathematicum
PY - 2008
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 044
IS - 1
SP - 57
EP - 67
AB - It was conjectured in [26] that, for all submanifolds $M^n$ of all real space forms $\tilde{M}^{n+m}(c)$, the Wintgen inequality $\rho \le H^2 - \rho ^\perp + c$ is valid at all points of $M$, whereby $\rho $ is the normalised scalar curvature of the Riemannian manifold $M$ and $H^2$, respectively $\rho ^\perp $, are the squared mean curvature and the normalised scalar normal curvature of the submanifold $M$ in the ambient space $\tilde{M}$, and this conjecture was shown there to be true whenever codimension $m = 2$. For a given Riemannian manifold $M$, this inequality can be interpreted as follows: for all possible isometric immersions of $M^n$ in space forms $\tilde{M}^{n+m}(c)$, the value of the intrinsic scalar curvature $\rho $ of $M$ puts a lower bound to all possible values of the extrinsic curvature $H^2 - \rho ^\perp + c$ that $M$ in any case can not avoid to “undergo” as a submanifold of $\tilde{M}$. And, from this point of view, then $M$ is called a Wintgen ideal submanifold when it actually is able to achieve a realisation in $\tilde{M}$ such that this extrinsic curvature indeed everywhere assumes its theoretically smallest possible value as given by its normalised scalar curvature. For codimension $m = 2$ and dimension $n > 3$, we will show that the submanifolds $M$ which realise such minimal extrinsic curvatures in $\tilde{M}$ do intrinsically enjoy some curvature symmetries in the sense of Deszcz of their Riemann-Christoffel curvature tensor, of their Ricci curvature tensor and of their conformal curvature tensor of Weyl, which properties will be described mainly following [20].
LA - eng
KW - submanifolds; Wintgen inequality; ideal submanifolds; Deszcz symmetries; Wintgen inequality; ideal submanifold; Deszcz symmetry
UR - http://eudml.org/doc/250441
ER -
References
top- Belkhelfa, M., Deszcz, R., Glogowska, M., Hotlos, M., Kowalczyk, D., Verstraelen, L., PDE’s, Submanifolds and Affine Differential Geometry, vol. 57, ch. On some type of curvature conditions, Banach Center Publ., 2002. (2002)
- Belkhelfa, M., Deszcz, R., Verstraelen, L., Symmetry properties of dimensional D’Atri spaces, Kyungpook Math. J. 46 (2006), 367–376. (2006) Zbl1120.53010MR2261390
- Bryant, R. L., 10.1007/BF01237361, Bol. Soc. Brasil. Math. (N.S.) 21 (1991), 133–157. (1991) Zbl0760.53034MR1139562DOI10.1007/BF01237361
- Cartan, E., Leçons sur la géométrie des espaces de Riemann, Gauthier-Villars, Paris, 1928. (1928) MR0020842
- Chen, B. Y., Geometry of Submanifolds, M. Dekker Publ. Co., New York, 1973. (1973) Zbl0262.53036MR0353212
- Chen, B. Y., Some conformal invariants of submanifolds and their applications, Boll. Un. Mat. Ital. 10 (1974), 380–385. (1974) Zbl0321.53042MR0370436
- Chen, B. Y., Geometry of Submanifolds and Its Applications, Science University of Tokyo, 1981. (1981) Zbl0474.53050MR0627323
- Chen, B. Y., Handbook of Differential Geometry, vol. 1, ch. Riemannian submanifolds, pp. 187–418, North-Holland, Elsevier, Amsterdam, 2000. (2000) MR1736854
- Choi, T., Lu, Z., On the DDVV conjecture and the comass in calibrated geometry (I), preprint. Zbl1180.53055MR2429620
- Defever, F., Deszcz, R., Dhooghe, P., Verstraelen, L., Yaprak, S., 10.1007/BF03322827, Results in Math. 27 (1995), 227–236. (1995) MR1331096DOI10.1007/BF03322827
- Deszcz, R., On pseudosymmetric spaces, Bull. Soc. Math. Belg., Série A 44 (1992), 1–34. (1992) Zbl0808.53012MR1315367
- Deszcz, R., Hotloś, M., Sentürk, Z., On Ricci pseudosymmetric hypersurfaces in space forms, Demonstratio Math. 34 (2004), 203–214. (2004) Zbl1055.53011MR2053116
- Deszcz, R., Verstraelen, L., Yaprak, S., Warped products realizing a certain condition of pseudosymmetry type imposed on the Weyl curvature tensor, Chinese J. Math. 22 (1994), 139–157. (1994) Zbl0817.53008MR1283222
- Deszcz, R., Yaprak, S., Curvature properties of Cartan hypersurfaces, Colloq. Math. 67 (1994), 91–98. (1994) Zbl0816.53032MR1292946
- Dillen, F., Fastenakels, J., van der Veken, J., Three-dimensional submanifolds of with extremal normal curvature, preprint.
- Dillen, F., Fastenakels, J., van der Veken, J., 10.1016/j.geomphys.2006.06.006, J. Geom. Phys. 57 (2007), 833–840. (2007) Zbl1108.53020MR2275193DOI10.1016/j.geomphys.2006.06.006
- Guadalupe, I. V., Rodriguez, L., 10.2140/pjm.1983.106.95, Pacific J. Math. 106 (1983), 95–103. (1983) Zbl0515.53044MR0694674DOI10.2140/pjm.1983.106.95
- Haesen, S., Verstraelen, L., 10.1063/1.1745129, J. Math. Phys. 45 (2004), 2343–2346. (2004) MR2059697DOI10.1063/1.1745129
- Haesen, S., Verstraelen, L., Differential Geometry and Topology, Discrete and Computational Geometry, ch. Curvature and symmetries of parallel transport, pp. 197–238, IOS Press, NATO Science Series, 2005. (2005)
- Haesen, S., Verstraelen, L., 10.1007/s00229-006-0056-0, Manuscripta Math. 122 (2007), 59–72. (2007) Zbl1109.53020MR2287700DOI10.1007/s00229-006-0056-0
- Jahanara, B., Haesen, S., Sentürk, Z., Verstraelen, L., 10.1016/j.geomphys.2007.02.008, J. Geom. Phys. 57 (2007), 1771–1777. (2007) Zbl1169.53016MR2330665DOI10.1016/j.geomphys.2007.02.008
- Kowalski, O., Sekizawa, M., Pseudo-symmetric spaces of constant type in dimension three-elliptic spaces, Rend. Mat. Appl. (7) 17 (1997), 477–512. (1997) Zbl0889.53026MR1608724
- Levi-Civita, T., Nozione di parallelismo in una varietá qualcunque e conseguente spezificazione geometrica della curvatura Riemanniana, Rend. Circ. Mat. Palermo (2) 42 (1917), 173–204. (1917)
- Rouxel, B., Sur une famille de A-surfaces d’un espace euclidien , Proc. 10. Österreichischer Mathematiker Kongress, Insbruck, 1981. (1981)
- Schouten, J. A., Die direkte Analysis zur neueren Relativitätstheorie, Verhandelingen Kon. Akad. van Wetenschappen te Amsterdam, Sectie I 12 (6) (1918), 1–95. (1918)
- Smet, P. J. De, Dillen, F., Verstraelen, L., Vrancken, L., A pointwise inequality in submanifold theory, Arch. Math. (Basel) 35 (1999), 115–128. (1999) Zbl1054.53075MR1711669
- Suceavă, B. D., DDVV conjecture, preprint.
- Szabó, Z., Structure theorems on Riemannian spaces satisfying . I. The local version, J. Differential Geom. 17 (1982), 531–582. (1982) MR0683165
- Szabó, Z., 10.1007/BF00233102, Geom. Dedicata 19 (1985), 65–108. (1985) MR0797152DOI10.1007/BF00233102
- Thurston, W. M., Three-dimensional Geometry and Topology, vol. 1, Princeton University Press, 1997. (1997) Zbl0873.57001MR1435975
- Verstraelen, L., Geometry and Topology of Submanifolds, vol. VI, ch. Comments on the pseudo-symmetry in the sense of Deszcz, pp. 119–209, World Sci. Publ. Co., Singapore, 1994. (1994) Zbl0832.00044MR1315102
- Wintgen, P., Sur l’inégalité de Chen-Willmore, C. R. Acad. Sci. Paris 288 (1979), 993–995. (1979) Zbl0421.53003MR0540375
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.