On Deszcz symmetries of Wintgen ideal submanifolds

Miroslava Petrović-Torgašev; Leopold C. A. Verstraelen

Archivum Mathematicum (2008)

  • Volume: 044, Issue: 1, page 57-67
  • ISSN: 0044-8753

Abstract

top
It was conjectured in [26] that, for all submanifolds M n of all real space forms M ˜ n + m ( c ) , the Wintgen inequality ρ H 2 - ρ + c is valid at all points of M , whereby ρ is the normalised scalar curvature of the Riemannian manifold M and H 2 , respectively ρ , are the squared mean curvature and the normalised scalar normal curvature of the submanifold M in the ambient space M ˜ , and this conjecture was shown there to be true whenever codimension m = 2 . For a given Riemannian manifold M , this inequality can be interpreted as follows: for all possible isometric immersions of M n in space forms M ˜ n + m ( c ) , the value of the intrinsic scalar curvature ρ of M puts a lower bound to all possible values of the extrinsic curvature H 2 - ρ + c that M in any case can not avoid to “undergo” as a submanifold of M ˜ . And, from this point of view, then M is called a Wintgen ideal submanifold when it actually is able to achieve a realisation in M ˜ such that this extrinsic curvature indeed everywhere assumes its theoretically smallest possible value as given by its normalised scalar curvature. For codimension m = 2 and dimension n > 3 , we will show that the submanifolds M which realise such minimal extrinsic curvatures in M ˜ do intrinsically enjoy some curvature symmetries in the sense of Deszcz of their Riemann-Christoffel curvature tensor, of their Ricci curvature tensor and of their conformal curvature tensor of Weyl, which properties will be described mainly following [20].

How to cite

top

Petrović-Torgašev, Miroslava, and Verstraelen, Leopold C. A.. "On Deszcz symmetries of Wintgen ideal submanifolds." Archivum Mathematicum 044.1 (2008): 57-67. <http://eudml.org/doc/250441>.

@article{Petrović2008,
abstract = {It was conjectured in [26] that, for all submanifolds $M^n$ of all real space forms $\tilde\{M\}^\{n+m\}(c)$, the Wintgen inequality $\rho \le H^2 - \rho ^\perp + c$ is valid at all points of $M$, whereby $\rho $ is the normalised scalar curvature of the Riemannian manifold $M$ and $H^2$, respectively $\rho ^\perp $, are the squared mean curvature and the normalised scalar normal curvature of the submanifold $M$ in the ambient space $\tilde\{M\}$, and this conjecture was shown there to be true whenever codimension $m = 2$. For a given Riemannian manifold $M$, this inequality can be interpreted as follows: for all possible isometric immersions of $M^n$ in space forms $\tilde\{M\}^\{n+m\}(c)$, the value of the intrinsic scalar curvature $\rho $ of $M$ puts a lower bound to all possible values of the extrinsic curvature $H^2 - \rho ^\perp + c$ that $M$ in any case can not avoid to “undergo” as a submanifold of $\tilde\{M\}$. And, from this point of view, then $M$ is called a Wintgen ideal submanifold when it actually is able to achieve a realisation in $\tilde\{M\}$ such that this extrinsic curvature indeed everywhere assumes its theoretically smallest possible value as given by its normalised scalar curvature. For codimension $m = 2$ and dimension $n > 3$, we will show that the submanifolds $M$ which realise such minimal extrinsic curvatures in $\tilde\{M\}$ do intrinsically enjoy some curvature symmetries in the sense of Deszcz of their Riemann-Christoffel curvature tensor, of their Ricci curvature tensor and of their conformal curvature tensor of Weyl, which properties will be described mainly following [20].},
author = {Petrović-Torgašev, Miroslava, Verstraelen, Leopold C. A.},
journal = {Archivum Mathematicum},
keywords = {submanifolds; Wintgen inequality; ideal submanifolds; Deszcz symmetries; Wintgen inequality; ideal submanifold; Deszcz symmetry},
language = {eng},
number = {1},
pages = {57-67},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {On Deszcz symmetries of Wintgen ideal submanifolds},
url = {http://eudml.org/doc/250441},
volume = {044},
year = {2008},
}

TY - JOUR
AU - Petrović-Torgašev, Miroslava
AU - Verstraelen, Leopold C. A.
TI - On Deszcz symmetries of Wintgen ideal submanifolds
JO - Archivum Mathematicum
PY - 2008
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 044
IS - 1
SP - 57
EP - 67
AB - It was conjectured in [26] that, for all submanifolds $M^n$ of all real space forms $\tilde{M}^{n+m}(c)$, the Wintgen inequality $\rho \le H^2 - \rho ^\perp + c$ is valid at all points of $M$, whereby $\rho $ is the normalised scalar curvature of the Riemannian manifold $M$ and $H^2$, respectively $\rho ^\perp $, are the squared mean curvature and the normalised scalar normal curvature of the submanifold $M$ in the ambient space $\tilde{M}$, and this conjecture was shown there to be true whenever codimension $m = 2$. For a given Riemannian manifold $M$, this inequality can be interpreted as follows: for all possible isometric immersions of $M^n$ in space forms $\tilde{M}^{n+m}(c)$, the value of the intrinsic scalar curvature $\rho $ of $M$ puts a lower bound to all possible values of the extrinsic curvature $H^2 - \rho ^\perp + c$ that $M$ in any case can not avoid to “undergo” as a submanifold of $\tilde{M}$. And, from this point of view, then $M$ is called a Wintgen ideal submanifold when it actually is able to achieve a realisation in $\tilde{M}$ such that this extrinsic curvature indeed everywhere assumes its theoretically smallest possible value as given by its normalised scalar curvature. For codimension $m = 2$ and dimension $n > 3$, we will show that the submanifolds $M$ which realise such minimal extrinsic curvatures in $\tilde{M}$ do intrinsically enjoy some curvature symmetries in the sense of Deszcz of their Riemann-Christoffel curvature tensor, of their Ricci curvature tensor and of their conformal curvature tensor of Weyl, which properties will be described mainly following [20].
LA - eng
KW - submanifolds; Wintgen inequality; ideal submanifolds; Deszcz symmetries; Wintgen inequality; ideal submanifold; Deszcz symmetry
UR - http://eudml.org/doc/250441
ER -

References

top
  1. Belkhelfa, M., Deszcz, R., Glogowska, M., Hotlos, M., Kowalczyk, D., Verstraelen, L., PDE’s, Submanifolds and Affine Differential Geometry, vol. 57, ch. On some type of curvature conditions, Banach Center Publ., 2002. (2002) 
  2. Belkhelfa, M., Deszcz, R., Verstraelen, L., Symmetry properties of 3 - dimensional D’Atri spaces, Kyungpook Math. J. 46 (2006), 367–376. (2006) Zbl1120.53010MR2261390
  3. Bryant, R. L., 10.1007/BF01237361, Bol. Soc. Brasil. Math. (N.S.) 21 (1991), 133–157. (1991) Zbl0760.53034MR1139562DOI10.1007/BF01237361
  4. Cartan, E., Leçons sur la géométrie des espaces de Riemann, Gauthier-Villars, Paris, 1928. (1928) MR0020842
  5. Chen, B. Y., Geometry of Submanifolds, M. Dekker Publ. Co., New York, 1973. (1973) Zbl0262.53036MR0353212
  6. Chen, B. Y., Some conformal invariants of submanifolds and their applications, Boll. Un. Mat. Ital. 10 (1974), 380–385. (1974) Zbl0321.53042MR0370436
  7. Chen, B. Y., Geometry of Submanifolds and Its Applications, Science University of Tokyo, 1981. (1981) Zbl0474.53050MR0627323
  8. Chen, B. Y., Handbook of Differential Geometry, vol. 1, ch. Riemannian submanifolds, pp. 187–418, North-Holland, Elsevier, Amsterdam, 2000. (2000) MR1736854
  9. Choi, T., Lu, Z., On the DDVV conjecture and the comass in calibrated geometry (I), preprint. Zbl1180.53055MR2429620
  10. Defever, F., Deszcz, R., Dhooghe, P., Verstraelen, L., Yaprak, S., 10.1007/BF03322827, Results in Math. 27 (1995), 227–236. (1995) MR1331096DOI10.1007/BF03322827
  11. Deszcz, R., On pseudosymmetric spaces, Bull. Soc. Math. Belg., Série A 44 (1992), 1–34. (1992) Zbl0808.53012MR1315367
  12. Deszcz, R., Hotloś, M., Sentürk, Z., On Ricci pseudosymmetric hypersurfaces in space forms, Demonstratio Math. 34 (2004), 203–214. (2004) Zbl1055.53011MR2053116
  13. Deszcz, R., Verstraelen, L., Yaprak, S., Warped products realizing a certain condition of pseudosymmetry type imposed on the Weyl curvature tensor, Chinese J. Math. 22 (1994), 139–157. (1994) Zbl0817.53008MR1283222
  14. Deszcz, R., Yaprak, S., Curvature properties of Cartan hypersurfaces, Colloq. Math. 67 (1994), 91–98. (1994) Zbl0816.53032MR1292946
  15. Dillen, F., Fastenakels, J., van der Veken, J., Three-dimensional submanifolds of E 5 with extremal normal curvature, preprint. 
  16. Dillen, F., Fastenakels, J., van der Veken, J., 10.1016/j.geomphys.2006.06.006, J. Geom. Phys. 57 (2007), 833–840. (2007) Zbl1108.53020MR2275193DOI10.1016/j.geomphys.2006.06.006
  17. Guadalupe, I. V., Rodriguez, L., 10.2140/pjm.1983.106.95, Pacific J. Math. 106 (1983), 95–103. (1983) Zbl0515.53044MR0694674DOI10.2140/pjm.1983.106.95
  18. Haesen, S., Verstraelen, L., 10.1063/1.1745129, J. Math. Phys. 45 (2004), 2343–2346. (2004) MR2059697DOI10.1063/1.1745129
  19. Haesen, S., Verstraelen, L., Differential Geometry and Topology, Discrete and Computational Geometry, ch. Curvature and symmetries of parallel transport, pp. 197–238, IOS Press, NATO Science Series, 2005. (2005) 
  20. Haesen, S., Verstraelen, L., 10.1007/s00229-006-0056-0, Manuscripta Math. 122 (2007), 59–72. (2007) Zbl1109.53020MR2287700DOI10.1007/s00229-006-0056-0
  21. Jahanara, B., Haesen, S., Sentürk, Z., Verstraelen, L., 10.1016/j.geomphys.2007.02.008, J. Geom. Phys. 57 (2007), 1771–1777. (2007) Zbl1169.53016MR2330665DOI10.1016/j.geomphys.2007.02.008
  22. Kowalski, O., Sekizawa, M., Pseudo-symmetric spaces of constant type in dimension three-elliptic spaces, Rend. Mat. Appl. (7) 17 (1997), 477–512. (1997) Zbl0889.53026MR1608724
  23. Levi-Civita, T., Nozione di parallelismo in una varietá qualcunque e conseguente spezificazione geometrica della curvatura Riemanniana, Rend. Circ. Mat. Palermo (2) 42 (1917), 173–204. (1917) 
  24. Rouxel, B., Sur une famille de A-surfaces d’un espace euclidien E 4 , Proc. 10. Österreichischer Mathematiker Kongress, Insbruck, 1981. (1981) 
  25. Schouten, J. A., Die direkte Analysis zur neueren Relativitätstheorie, Verhandelingen Kon. Akad. van Wetenschappen te Amsterdam, Sectie I 12 (6) (1918), 1–95. (1918) 
  26. Smet, P. J. De, Dillen, F., Verstraelen, L., Vrancken, L., A pointwise inequality in submanifold theory, Arch. Math. (Basel) 35 (1999), 115–128. (1999) Zbl1054.53075MR1711669
  27. Suceavă, B. D., DDVV conjecture, preprint. 
  28. Szabó, Z., Structure theorems on Riemannian spaces satisfying R ( X , Y ) · R = 0 . I. The local version, J. Differential Geom. 17 (1982), 531–582. (1982) MR0683165
  29. Szabó, Z., 10.1007/BF00233102, Geom. Dedicata 19 (1985), 65–108. (1985) MR0797152DOI10.1007/BF00233102
  30. Thurston, W. M., Three-dimensional Geometry and Topology, vol. 1, Princeton University Press, 1997. (1997) Zbl0873.57001MR1435975
  31. Verstraelen, L., Geometry and Topology of Submanifolds, vol. VI, ch. Comments on the pseudo-symmetry in the sense of Deszcz, pp. 119–209, World Sci. Publ. Co., Singapore, 1994. (1994) Zbl0832.00044MR1315102
  32. Wintgen, P., Sur l’inégalité de Chen-Willmore, C. R. Acad. Sci. Paris 288 (1979), 993–995. (1979) Zbl0421.53003MR0540375

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.