Helicoidal surfaces in Minkowski space with constant mean curvature and constant Gauss curvature

Rafael López; Esma Demir

Open Mathematics (2014)

  • Volume: 12, Issue: 9, page 1349-1361
  • ISSN: 2391-5455

Abstract

top
We classify all helicoidal non-degenerate surfaces in Minkowski space with constant mean curvature whose generating curve is a the graph of a polynomial or a Lorentzian circle. In the first case, we prove that the degree of the polynomial is 0 or 1 and that the surface is ruled. If the generating curve is a Lorentzian circle, we prove that the only possibility is that the axis is spacelike and the center of the circle lies on the axis.

How to cite

top

Rafael López, and Esma Demir. "Helicoidal surfaces in Minkowski space with constant mean curvature and constant Gauss curvature." Open Mathematics 12.9 (2014): 1349-1361. <http://eudml.org/doc/269080>.

@article{RafaelLópez2014,
abstract = {We classify all helicoidal non-degenerate surfaces in Minkowski space with constant mean curvature whose generating curve is a the graph of a polynomial or a Lorentzian circle. In the first case, we prove that the degree of the polynomial is 0 or 1 and that the surface is ruled. If the generating curve is a Lorentzian circle, we prove that the only possibility is that the axis is spacelike and the center of the circle lies on the axis.},
author = {Rafael López, Esma Demir},
journal = {Open Mathematics},
keywords = {Minkowski space; Helicoidad surface; Mean curvature; Gauss curvature; helicoidad surface; mean curvature},
language = {eng},
number = {9},
pages = {1349-1361},
title = {Helicoidal surfaces in Minkowski space with constant mean curvature and constant Gauss curvature},
url = {http://eudml.org/doc/269080},
volume = {12},
year = {2014},
}

TY - JOUR
AU - Rafael López
AU - Esma Demir
TI - Helicoidal surfaces in Minkowski space with constant mean curvature and constant Gauss curvature
JO - Open Mathematics
PY - 2014
VL - 12
IS - 9
SP - 1349
EP - 1361
AB - We classify all helicoidal non-degenerate surfaces in Minkowski space with constant mean curvature whose generating curve is a the graph of a polynomial or a Lorentzian circle. In the first case, we prove that the degree of the polynomial is 0 or 1 and that the surface is ruled. If the generating curve is a Lorentzian circle, we prove that the only possibility is that the axis is spacelike and the center of the circle lies on the axis.
LA - eng
KW - Minkowski space; Helicoidad surface; Mean curvature; Gauss curvature; helicoidad surface; mean curvature
UR - http://eudml.org/doc/269080
ER -

References

top
  1. [1] Beneki C.C., Kaimakamis G., Papantoniou B.J., Helicoidal surfaces in three-dimensional Minkowski space, J. Math. Anal. Appl., 2002, 275(2), 586–614 http://dx.doi.org/10.1016/S0022-247X(02)00269-X Zbl1022.53016
  2. [2] Dillen F., Kühnel W., Ruled Weingarten surfaces in Minkowski 3-space, Manuscripta Math., 1999, 98(3), 307–320 http://dx.doi.org/10.1007/s002290050142 Zbl0942.53004
  3. [3] Hano J., Nomizu K., On isometric immersions of the hyperbolic plane into the Lorentz-Minkowski space and the Monge-Ampére equation of a certain type, Math. Ann., 1983, 262(2), 245–253 http://dx.doi.org/10.1007/BF01455315 Zbl0507.53042
  4. [4] Hano J., Nomizu K., Surfaces of revolution with constant mean curvature in Lorentz-Minkowski space, Tôhoku Math. J., 1984, 36(3), 427–437 http://dx.doi.org/10.2748/tmj/1178228808 Zbl0535.53002
  5. [5] Hou Z.H., Ji F., Helicoidal surfaces with H 2 = K in Minkowski 3-space, J. Math. Anal. Appl., 2007, 325(1), 101–113 http://dx.doi.org/10.1016/j.jmaa.2006.01.017 Zbl1112.53009
  6. [6] Ji F., Hou Z.H., A kind of helicoidal surfaces in 3-dimensional Minkowski space, J. Math. Anal. Appl., 2005, 304(2), 632–643 http://dx.doi.org/10.1016/j.jmaa.2004.09.065 Zbl1162.53304
  7. [7] Ji F., Hou Z.H., Helicoidal surfaces under the cubic screw motion in Minkowski 3-space, J. Math. Anal. Appl., 2006, 318(2), 634–647 http://dx.doi.org/10.1016/j.jmaa.2005.06.032 Zbl1094.53009
  8. [8] Kobayashi O., Maximal surfaces in the 3-dimensional Minkowski space L 3, Tokyo J. Math., 1983, 6(2), 297–309 http://dx.doi.org/10.3836/tjm/1270213872 Zbl0535.53052
  9. [9] López F.J., López R., Souam R., Maximal surfaces of Riemann type in Lorentz-Minkowski space L3, Michigan Math. J., 2000, 47(3), 469–497 http://dx.doi.org/10.1307/mmj/1030132590 Zbl1029.53014
  10. [10] López R., Timelike surfaces with constant mean curvature in Lorentz three-space, Tôhoku Math. J., 2000, 52(4), 515–532 http://dx.doi.org/10.2748/tmj/1178207753 Zbl0981.53051
  11. [11] López R., Surfaces of constant Gauss curvature in Lorentz-Minkowski three-space, Rocky Mountain J. Math., 2003, 33(3), 971–993 http://dx.doi.org/10.1216/rmjm/1181069938 Zbl1062.53003
  12. [12] López R., Differential geometry of curves and surfaces in Lorentz-Minkowski space, Int. Electron. J. Geom., 2014 (in press), preprint available at http://arxiv.org/abs/0810.3351 Zbl1312.53022
  13. [13] Mira P., Pastor J.A., Helicoidal maximal surfaces in Lorentz-Minkowski space, Monatsh. Math., 2003, 140(4), 315–334 http://dx.doi.org/10.1007/s00605-003-0111-9 Zbl1050.53014
  14. [14] O’Neill B., Semi-Riemannian Geometry, Pure Appl. Math., 103, Academic Press, New York, 1983 
  15. [15] Sasahara N., Spacelike helicoidal surfaces with constant mean curvature in Minkowski 3-space, Tokyo J. Math., 2000, 23(2), 477–502 http://dx.doi.org/10.3836/tjm/1255958684 Zbl0981.53052
  16. [16] Strubecker K., Differentialgeometrie III, Sammlung Göschen, 1180, Walter de Gruyter, Berlin, 1959 
  17. [17] Weinstein T., An Introduction to Lorentz Surfaces, de Gruyter Exp. Math., 22, Walter de Gruyter, Berlin, 1996 http://dx.doi.org/10.1515/9783110821635 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.