Helicoidal surfaces in Minkowski space with constant mean curvature and constant Gauss curvature
Open Mathematics (2014)
- Volume: 12, Issue: 9, page 1349-1361
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topRafael López, and Esma Demir. "Helicoidal surfaces in Minkowski space with constant mean curvature and constant Gauss curvature." Open Mathematics 12.9 (2014): 1349-1361. <http://eudml.org/doc/269080>.
@article{RafaelLópez2014,
abstract = {We classify all helicoidal non-degenerate surfaces in Minkowski space with constant mean curvature whose generating curve is a the graph of a polynomial or a Lorentzian circle. In the first case, we prove that the degree of the polynomial is 0 or 1 and that the surface is ruled. If the generating curve is a Lorentzian circle, we prove that the only possibility is that the axis is spacelike and the center of the circle lies on the axis.},
author = {Rafael López, Esma Demir},
journal = {Open Mathematics},
keywords = {Minkowski space; Helicoidad surface; Mean curvature; Gauss curvature; helicoidad surface; mean curvature},
language = {eng},
number = {9},
pages = {1349-1361},
title = {Helicoidal surfaces in Minkowski space with constant mean curvature and constant Gauss curvature},
url = {http://eudml.org/doc/269080},
volume = {12},
year = {2014},
}
TY - JOUR
AU - Rafael López
AU - Esma Demir
TI - Helicoidal surfaces in Minkowski space with constant mean curvature and constant Gauss curvature
JO - Open Mathematics
PY - 2014
VL - 12
IS - 9
SP - 1349
EP - 1361
AB - We classify all helicoidal non-degenerate surfaces in Minkowski space with constant mean curvature whose generating curve is a the graph of a polynomial or a Lorentzian circle. In the first case, we prove that the degree of the polynomial is 0 or 1 and that the surface is ruled. If the generating curve is a Lorentzian circle, we prove that the only possibility is that the axis is spacelike and the center of the circle lies on the axis.
LA - eng
KW - Minkowski space; Helicoidad surface; Mean curvature; Gauss curvature; helicoidad surface; mean curvature
UR - http://eudml.org/doc/269080
ER -
References
top- [1] Beneki C.C., Kaimakamis G., Papantoniou B.J., Helicoidal surfaces in three-dimensional Minkowski space, J. Math. Anal. Appl., 2002, 275(2), 586–614 http://dx.doi.org/10.1016/S0022-247X(02)00269-X Zbl1022.53016
- [2] Dillen F., Kühnel W., Ruled Weingarten surfaces in Minkowski 3-space, Manuscripta Math., 1999, 98(3), 307–320 http://dx.doi.org/10.1007/s002290050142 Zbl0942.53004
- [3] Hano J., Nomizu K., On isometric immersions of the hyperbolic plane into the Lorentz-Minkowski space and the Monge-Ampére equation of a certain type, Math. Ann., 1983, 262(2), 245–253 http://dx.doi.org/10.1007/BF01455315 Zbl0507.53042
- [4] Hano J., Nomizu K., Surfaces of revolution with constant mean curvature in Lorentz-Minkowski space, Tôhoku Math. J., 1984, 36(3), 427–437 http://dx.doi.org/10.2748/tmj/1178228808 Zbl0535.53002
- [5] Hou Z.H., Ji F., Helicoidal surfaces with H 2 = K in Minkowski 3-space, J. Math. Anal. Appl., 2007, 325(1), 101–113 http://dx.doi.org/10.1016/j.jmaa.2006.01.017 Zbl1112.53009
- [6] Ji F., Hou Z.H., A kind of helicoidal surfaces in 3-dimensional Minkowski space, J. Math. Anal. Appl., 2005, 304(2), 632–643 http://dx.doi.org/10.1016/j.jmaa.2004.09.065 Zbl1162.53304
- [7] Ji F., Hou Z.H., Helicoidal surfaces under the cubic screw motion in Minkowski 3-space, J. Math. Anal. Appl., 2006, 318(2), 634–647 http://dx.doi.org/10.1016/j.jmaa.2005.06.032 Zbl1094.53009
- [8] Kobayashi O., Maximal surfaces in the 3-dimensional Minkowski space L 3, Tokyo J. Math., 1983, 6(2), 297–309 http://dx.doi.org/10.3836/tjm/1270213872 Zbl0535.53052
- [9] López F.J., López R., Souam R., Maximal surfaces of Riemann type in Lorentz-Minkowski space L3, Michigan Math. J., 2000, 47(3), 469–497 http://dx.doi.org/10.1307/mmj/1030132590 Zbl1029.53014
- [10] López R., Timelike surfaces with constant mean curvature in Lorentz three-space, Tôhoku Math. J., 2000, 52(4), 515–532 http://dx.doi.org/10.2748/tmj/1178207753 Zbl0981.53051
- [11] López R., Surfaces of constant Gauss curvature in Lorentz-Minkowski three-space, Rocky Mountain J. Math., 2003, 33(3), 971–993 http://dx.doi.org/10.1216/rmjm/1181069938 Zbl1062.53003
- [12] López R., Differential geometry of curves and surfaces in Lorentz-Minkowski space, Int. Electron. J. Geom., 2014 (in press), preprint available at http://arxiv.org/abs/0810.3351 Zbl1312.53022
- [13] Mira P., Pastor J.A., Helicoidal maximal surfaces in Lorentz-Minkowski space, Monatsh. Math., 2003, 140(4), 315–334 http://dx.doi.org/10.1007/s00605-003-0111-9 Zbl1050.53014
- [14] O’Neill B., Semi-Riemannian Geometry, Pure Appl. Math., 103, Academic Press, New York, 1983
- [15] Sasahara N., Spacelike helicoidal surfaces with constant mean curvature in Minkowski 3-space, Tokyo J. Math., 2000, 23(2), 477–502 http://dx.doi.org/10.3836/tjm/1255958684 Zbl0981.53052
- [16] Strubecker K., Differentialgeometrie III, Sammlung Göschen, 1180, Walter de Gruyter, Berlin, 1959
- [17] Weinstein T., An Introduction to Lorentz Surfaces, de Gruyter Exp. Math., 22, Walter de Gruyter, Berlin, 1996 http://dx.doi.org/10.1515/9783110821635
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.