Degenerate triply nonlinear problems with nonhomogeneous boundary conditions
Open Mathematics (2010)
- Volume: 8, Issue: 3, page 548-568
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topKaouther Ammar. "Degenerate triply nonlinear problems with nonhomogeneous boundary conditions." Open Mathematics 8.3 (2010): 548-568. <http://eudml.org/doc/269088>.
@article{KaoutherAmmar2010,
abstract = {The paper addresses the existence and uniqueness of entropy solutions for the degenerate triply nonlinear problem: b(v)t − div α(v, ▽g(v)) = f on Q:= (0, T) × Ω with the initial condition b(v(0, ·)) = b(v 0) on Ω and the nonhomogeneous boundary condition “v = u” on some part of the boundary (0, T) × ∂Ω”. The function g is continuous locally Lipschitz continuous and has a flat region [A 1, A 2,] with A 1 ≤ 0 ≤ A 2 so that the problem is of parabolic-hyperbolic type.},
author = {Kaouther Ammar},
journal = {Open Mathematics},
keywords = {Entropy solution; degenerate; Nonhomogenous boundary conditions; Diffusion; Continuous flux; entropy solution; nonhomogeneous boundary conditions; diffusion; continuous flux},
language = {eng},
number = {3},
pages = {548-568},
title = {Degenerate triply nonlinear problems with nonhomogeneous boundary conditions},
url = {http://eudml.org/doc/269088},
volume = {8},
year = {2010},
}
TY - JOUR
AU - Kaouther Ammar
TI - Degenerate triply nonlinear problems with nonhomogeneous boundary conditions
JO - Open Mathematics
PY - 2010
VL - 8
IS - 3
SP - 548
EP - 568
AB - The paper addresses the existence and uniqueness of entropy solutions for the degenerate triply nonlinear problem: b(v)t − div α(v, ▽g(v)) = f on Q:= (0, T) × Ω with the initial condition b(v(0, ·)) = b(v 0) on Ω and the nonhomogeneous boundary condition “v = u” on some part of the boundary (0, T) × ∂Ω”. The function g is continuous locally Lipschitz continuous and has a flat region [A 1, A 2,] with A 1 ≤ 0 ≤ A 2 so that the problem is of parabolic-hyperbolic type.
LA - eng
KW - Entropy solution; degenerate; Nonhomogenous boundary conditions; Diffusion; Continuous flux; entropy solution; nonhomogeneous boundary conditions; diffusion; continuous flux
UR - http://eudml.org/doc/269088
ER -
References
top- [1] Alt H.W., Luckhaus S., Quasilinear elliptic-parabolic differential equations, Math. Z., 1983, 183(3), 311–341 http://dx.doi.org/10.1007/BF01176474 Zbl0497.35049
- [2] Ammar K., On nonlinear diffusion problems with strong degeneracy, J. Differential Equations, 2008, 244(8), 1841–1887 http://dx.doi.org/10.1016/j.jde.2007.11.013 Zbl1157.35058
- [3] Ammar K., On degenerate non-uniformly elliptic problems, Differ. Equ. Appl., 2010, 2, 189–215 Zbl1204.35099
- [4] Ammar K., Redwane H., Degenerate stationary problems with homogeneous boundary conditions, Electron. J. Differential Equations, 2008, 30, 1–18 Zbl1138.35352
- [5] Ammar K., Redwane H., Renormalized solutions for nonlinear degenerate elliptic problems with L 1 data, Rev. Mat. Complut., 2009, 22(1), 37–52 Zbl1171.35055
- [6] Ammar K., Wittbold P., Existence of renormalized solutions of degenerate elliptic-parabolic problems, Proc. Roy. Soc. Edinburgh A, 2003, 133(3), 477–496 http://dx.doi.org/10.1017/S0308210500002493 Zbl1077.35103
- [7] Ammar K., Wittbold P., On a degenerate scalar conservation law with general boundary condition, Differential Integral Equations, 2008, 21(3–4), 363–386 Zbl1224.35061
- [8] Ammar K., Wittbold P., Carrillo J., Scalar conservation laws with general boundary condition and continuous flux function, J. Differential Equations, 2006, 228(1), 111–139 http://dx.doi.org/10.1016/j.jde.2006.05.002 Zbl1103.35069
- [9] Andreianov B., Some problems of the theory of nonlinear degenerate parabolic problems systems of conservation laws, PhD thesis, Université de Franche-Comté, France, 2000.
- [10] Andreianov B., Bendahmane M., Karlsen K.H., Ouaro S., Well-posedness results for triply nonlinear degenerate parabolic equations, J. Differential Equations, 2009, 247(1), 277–302 http://dx.doi.org/10.1016/j.jde.2009.03.001 Zbl1178.35212
- [11] Bardos C., le Roux A.Y., Nédélec J.-C., First order quasilinear equations with boundary conditions, Comm. Partial Differential Equations, 1979, 4(9), 1017–1034 http://dx.doi.org/10.1080/03605307908820117 Zbl0418.35024
- [12] Bénilan P., Boccardo L., Gallouët T., Gariephy R., Pierre M., Vázquez J.L., An L 1-theory of existence and uniqueness of solutions of nonlinear elliptic equations, Ann. Scuola Norm. Sup. Pisa. Cl. Sci., 22(2), 1995, 241–273 Zbl0866.35037
- [13] Bénilan P., Carrillo J., Wittbold P., Renormalized entropy solutions of scalar conservation laws, Ann. Scuola Norm. Sup. Pisa. Cl. Sci., 29(2), 2000, 313–327 Zbl0965.35021
- [14] Bénilan P., Wittbold P., On mild and weak solutions of elliptic-parabolic problems, Adv. Differential Equations, 1996, 1(6), 1053–1073 Zbl0858.35064
- [15] Blanchard D., Guibé O., Redwane H., Nonlinear equations with unbounded heat conduction and integrable data, Ann. Mat. Pura Appl., 2008, 187(3), 405–433 http://dx.doi.org/10.1007/s10231-007-0049-y Zbl1223.35152
- [16] Blanchard D., Porretta A., Stefan problems with nonlinear diffusion and convection, J. Differential Equations, 2005, 210(2), 383–428 http://dx.doi.org/10.1016/j.jde.2004.06.012 Zbl1075.35112
- [17] Carrillo J., Entropy solutions for nonlinear degenerate problems, Arch. Ration. Mech. Anal., 1999, 147(4), 269–361 http://dx.doi.org/10.1007/s002050050152 Zbl0935.35056
- [18] Carrillo J., Conservation laws with discontinuous flux functions and boundary conditions, J. Evol. Equ., 2003, 3(2), 283–301 Zbl1027.35069
- [19] Carrillo J., Wittbold P., Uniqueness of renormalized solutions of degenerate elliptic-parabolic problems, J. Differential Equations, 1999, 156(1), 93–121 http://dx.doi.org/10.1006/jdeq.1998.3597
- [20] Carrillo J., Wittbold P., Renormalized entropy solutions of scalar conservation laws with boundary condition, J. Differential Equations, 2002, 185(1), 137–160 http://dx.doi.org/10.1006/jdeq.2002.4179 Zbl1026.35069
- [21] DiPerna R.J., Measure-valued solutions to conservation laws, Arch. Rational Mech. Anal., 1985, 88(3), 223–270 http://dx.doi.org/10.1007/BF00752112 Zbl0616.35055
- [22] Evans L.C., Gariepy R.F., Measure Theory and Fine Properties of Functions, CRC Press, Boca Raton, 1992 Zbl0804.28001
- [23] Eymard R., Gallouët T., Herbin R., Finite Volume Methods, In: Handbook of Numerical Analysis, 7, North-Holland, Elsevier, Amsterdam, 2000, 713–1020 Zbl0981.65095
- [24] Eymard R., Herbin R., Michel A., Mathematical study of a petroleum engineering scheme, Math. Model. Numer. Anal., 2003, 37(6), 937–972 http://dx.doi.org/10.1051/m2an:2003062 Zbl1118.76355
- [25] Gallouët T., Boundary conditions for hyperbolic equations or systems, In: Numerical Mathematics and Advanced Applications, Springer, Berlin, 2004, 39–55 Zbl1198.35148
- [26] Giusti E., Minimal Surfaces and Functions of Bounded Variation, Monographs in Mathematics, Birkhäuser, Basel, 1984 Zbl0545.49018
- [27] Karlsen K.H., Risebro N.H., Towers J.D., On a nonlinear degenerate parabolic transport-diffusion equation with a discontinuous coefficient, Electron. J. Differential Equations, 2002, 93, 1–23 Zbl1015.35049
- [28] Karlsen K.H., Towers J.D., Convergence of the Lax-Friedrichs scheme and stability for conservation laws with discontinuous space-time dependent flux, Chinese Ann. Math. Ser. B, 2004, 25(3), 287–318 http://dx.doi.org/10.1142/S0252959904000299 Zbl1112.65085
- [29] Kruzhkov S.N., Generalized solutions of the Cauchy problem in the large for first-order nonlinear equations, Dokl. Akad. Nauk. SSSR, 1969, 187, 29–32 (in Russian) Zbl0202.37701
- [30] Kruzhkov S.N., First-order quasilinear equations in several independent variables, Mat. Sb. (N.S.), 1970, 81(2), 228–255 (in Russian) Zbl0215.16203
- [31] Landes R., On the existence of weak solutions for quasilinear equations parabolic initial-boundary value poblems, Proc. Roy. Soc. Edinburgh A, 1981, 89A(3–4), 217–237
- [32] Leray J., Lions J.L., Quelques résultats de Višik sur les problèmes elliptiques non linéaires par les méthodes de Minty-Browder, Bull. Soc. Math. France, 1965, 93, 97–107 Zbl0132.10502
- [33] Málek J., Nečas J., Rokyta M., Ružička M., Weak and measure-valued solutions to evolutionary PDEs, Applied Mathematics and Mathematical Computation 13, Chapman & Hall, London, 1996 Zbl0851.35002
- [34] Mascia C., Porretta A., Terracina A., Nonhomogeneous Dirichlet problems for degenerate parabolic-Hyperbolic Equations, Arch. Ration. Mech. Anal., 2002, 163(2), 87–124 http://dx.doi.org/10.1007/s002050200184 Zbl1027.35081
- [35] Michel A., Vovelle J., Entropy formulation for parabolic degenerate equations with general Dirichlet boundary conditions and application to the convergence of FV methods, SIAM J. Numer. Anal., 2003, 41(6), 2262–2293 http://dx.doi.org/10.1137/S0036142902406612 Zbl1058.35127
- [36] Murat F., Soluciones renormalizadas de EDP elipticas non lineales, Cours à l’Université de Séville, Publication R93023, Laboratoire d’Analyse Numérique, Paris VI, France, 1993
- [37] Otto F., Initial-boundary value problem for a scalar conservation law, C.R. Acad. Sci. Paris Sér. I Math., 1996, 322(8), 729–734 Zbl0852.35013
- [38] Perthame B., Kinetic Formulation of Conservation laws, Oxford Lecture Series in Mathematics and its Applications, 21, Oxford University Press, Oxford, 2002 Zbl1030.35002
- [39] Szepessy A., Measure-valued solutions of scalar conservation laws with boundary conditions, Arch. Rational Mech. Anal., 1989, 107(2), 181–193 http://dx.doi.org/10.1007/BF00286499 Zbl0702.35155
- [40] Vallet G., Dirichlet problem for a nonlinear conservation law, Rev. Mat. Complut., 2000, 13(1), 231–250 Zbl0979.35099
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.