Degenerate triply nonlinear problems with nonhomogeneous boundary conditions

Kaouther Ammar

Open Mathematics (2010)

  • Volume: 8, Issue: 3, page 548-568
  • ISSN: 2391-5455

Abstract

top
The paper addresses the existence and uniqueness of entropy solutions for the degenerate triply nonlinear problem: b(v)t − div α(v, ▽g(v)) = f on Q:= (0, T) × Ω with the initial condition b(v(0, ·)) = b(v 0) on Ω and the nonhomogeneous boundary condition “v = u” on some part of the boundary (0, T) × ∂Ω”. The function g is continuous locally Lipschitz continuous and has a flat region [A 1, A 2,] with A 1 ≤ 0 ≤ A 2 so that the problem is of parabolic-hyperbolic type.

How to cite

top

Kaouther Ammar. "Degenerate triply nonlinear problems with nonhomogeneous boundary conditions." Open Mathematics 8.3 (2010): 548-568. <http://eudml.org/doc/269088>.

@article{KaoutherAmmar2010,
abstract = {The paper addresses the existence and uniqueness of entropy solutions for the degenerate triply nonlinear problem: b(v)t − div α(v, ▽g(v)) = f on Q:= (0, T) × Ω with the initial condition b(v(0, ·)) = b(v 0) on Ω and the nonhomogeneous boundary condition “v = u” on some part of the boundary (0, T) × ∂Ω”. The function g is continuous locally Lipschitz continuous and has a flat region [A 1, A 2,] with A 1 ≤ 0 ≤ A 2 so that the problem is of parabolic-hyperbolic type.},
author = {Kaouther Ammar},
journal = {Open Mathematics},
keywords = {Entropy solution; degenerate; Nonhomogenous boundary conditions; Diffusion; Continuous flux; entropy solution; nonhomogeneous boundary conditions; diffusion; continuous flux},
language = {eng},
number = {3},
pages = {548-568},
title = {Degenerate triply nonlinear problems with nonhomogeneous boundary conditions},
url = {http://eudml.org/doc/269088},
volume = {8},
year = {2010},
}

TY - JOUR
AU - Kaouther Ammar
TI - Degenerate triply nonlinear problems with nonhomogeneous boundary conditions
JO - Open Mathematics
PY - 2010
VL - 8
IS - 3
SP - 548
EP - 568
AB - The paper addresses the existence and uniqueness of entropy solutions for the degenerate triply nonlinear problem: b(v)t − div α(v, ▽g(v)) = f on Q:= (0, T) × Ω with the initial condition b(v(0, ·)) = b(v 0) on Ω and the nonhomogeneous boundary condition “v = u” on some part of the boundary (0, T) × ∂Ω”. The function g is continuous locally Lipschitz continuous and has a flat region [A 1, A 2,] with A 1 ≤ 0 ≤ A 2 so that the problem is of parabolic-hyperbolic type.
LA - eng
KW - Entropy solution; degenerate; Nonhomogenous boundary conditions; Diffusion; Continuous flux; entropy solution; nonhomogeneous boundary conditions; diffusion; continuous flux
UR - http://eudml.org/doc/269088
ER -

References

top
  1. [1] Alt H.W., Luckhaus S., Quasilinear elliptic-parabolic differential equations, Math. Z., 1983, 183(3), 311–341 http://dx.doi.org/10.1007/BF01176474 Zbl0497.35049
  2. [2] Ammar K., On nonlinear diffusion problems with strong degeneracy, J. Differential Equations, 2008, 244(8), 1841–1887 http://dx.doi.org/10.1016/j.jde.2007.11.013 Zbl1157.35058
  3. [3] Ammar K., On degenerate non-uniformly elliptic problems, Differ. Equ. Appl., 2010, 2, 189–215 Zbl1204.35099
  4. [4] Ammar K., Redwane H., Degenerate stationary problems with homogeneous boundary conditions, Electron. J. Differential Equations, 2008, 30, 1–18 Zbl1138.35352
  5. [5] Ammar K., Redwane H., Renormalized solutions for nonlinear degenerate elliptic problems with L 1 data, Rev. Mat. Complut., 2009, 22(1), 37–52 Zbl1171.35055
  6. [6] Ammar K., Wittbold P., Existence of renormalized solutions of degenerate elliptic-parabolic problems, Proc. Roy. Soc. Edinburgh A, 2003, 133(3), 477–496 http://dx.doi.org/10.1017/S0308210500002493 Zbl1077.35103
  7. [7] Ammar K., Wittbold P., On a degenerate scalar conservation law with general boundary condition, Differential Integral Equations, 2008, 21(3–4), 363–386 Zbl1224.35061
  8. [8] Ammar K., Wittbold P., Carrillo J., Scalar conservation laws with general boundary condition and continuous flux function, J. Differential Equations, 2006, 228(1), 111–139 http://dx.doi.org/10.1016/j.jde.2006.05.002 Zbl1103.35069
  9. [9] Andreianov B., Some problems of the theory of nonlinear degenerate parabolic problems systems of conservation laws, PhD thesis, Université de Franche-Comté, France, 2000. 
  10. [10] Andreianov B., Bendahmane M., Karlsen K.H., Ouaro S., Well-posedness results for triply nonlinear degenerate parabolic equations, J. Differential Equations, 2009, 247(1), 277–302 http://dx.doi.org/10.1016/j.jde.2009.03.001 Zbl1178.35212
  11. [11] Bardos C., le Roux A.Y., Nédélec J.-C., First order quasilinear equations with boundary conditions, Comm. Partial Differential Equations, 1979, 4(9), 1017–1034 http://dx.doi.org/10.1080/03605307908820117 Zbl0418.35024
  12. [12] Bénilan P., Boccardo L., Gallouët T., Gariephy R., Pierre M., Vázquez J.L., An L 1-theory of existence and uniqueness of solutions of nonlinear elliptic equations, Ann. Scuola Norm. Sup. Pisa. Cl. Sci., 22(2), 1995, 241–273 Zbl0866.35037
  13. [13] Bénilan P., Carrillo J., Wittbold P., Renormalized entropy solutions of scalar conservation laws, Ann. Scuola Norm. Sup. Pisa. Cl. Sci., 29(2), 2000, 313–327 Zbl0965.35021
  14. [14] Bénilan P., Wittbold P., On mild and weak solutions of elliptic-parabolic problems, Adv. Differential Equations, 1996, 1(6), 1053–1073 Zbl0858.35064
  15. [15] Blanchard D., Guibé O., Redwane H., Nonlinear equations with unbounded heat conduction and integrable data, Ann. Mat. Pura Appl., 2008, 187(3), 405–433 http://dx.doi.org/10.1007/s10231-007-0049-y Zbl1223.35152
  16. [16] Blanchard D., Porretta A., Stefan problems with nonlinear diffusion and convection, J. Differential Equations, 2005, 210(2), 383–428 http://dx.doi.org/10.1016/j.jde.2004.06.012 Zbl1075.35112
  17. [17] Carrillo J., Entropy solutions for nonlinear degenerate problems, Arch. Ration. Mech. Anal., 1999, 147(4), 269–361 http://dx.doi.org/10.1007/s002050050152 Zbl0935.35056
  18. [18] Carrillo J., Conservation laws with discontinuous flux functions and boundary conditions, J. Evol. Equ., 2003, 3(2), 283–301 Zbl1027.35069
  19. [19] Carrillo J., Wittbold P., Uniqueness of renormalized solutions of degenerate elliptic-parabolic problems, J. Differential Equations, 1999, 156(1), 93–121 http://dx.doi.org/10.1006/jdeq.1998.3597 
  20. [20] Carrillo J., Wittbold P., Renormalized entropy solutions of scalar conservation laws with boundary condition, J. Differential Equations, 2002, 185(1), 137–160 http://dx.doi.org/10.1006/jdeq.2002.4179 Zbl1026.35069
  21. [21] DiPerna R.J., Measure-valued solutions to conservation laws, Arch. Rational Mech. Anal., 1985, 88(3), 223–270 http://dx.doi.org/10.1007/BF00752112 Zbl0616.35055
  22. [22] Evans L.C., Gariepy R.F., Measure Theory and Fine Properties of Functions, CRC Press, Boca Raton, 1992 Zbl0804.28001
  23. [23] Eymard R., Gallouët T., Herbin R., Finite Volume Methods, In: Handbook of Numerical Analysis, 7, North-Holland, Elsevier, Amsterdam, 2000, 713–1020 Zbl0981.65095
  24. [24] Eymard R., Herbin R., Michel A., Mathematical study of a petroleum engineering scheme, Math. Model. Numer. Anal., 2003, 37(6), 937–972 http://dx.doi.org/10.1051/m2an:2003062 Zbl1118.76355
  25. [25] Gallouët T., Boundary conditions for hyperbolic equations or systems, In: Numerical Mathematics and Advanced Applications, Springer, Berlin, 2004, 39–55 Zbl1198.35148
  26. [26] Giusti E., Minimal Surfaces and Functions of Bounded Variation, Monographs in Mathematics, Birkhäuser, Basel, 1984 Zbl0545.49018
  27. [27] Karlsen K.H., Risebro N.H., Towers J.D., On a nonlinear degenerate parabolic transport-diffusion equation with a discontinuous coefficient, Electron. J. Differential Equations, 2002, 93, 1–23 Zbl1015.35049
  28. [28] Karlsen K.H., Towers J.D., Convergence of the Lax-Friedrichs scheme and stability for conservation laws with discontinuous space-time dependent flux, Chinese Ann. Math. Ser. B, 2004, 25(3), 287–318 http://dx.doi.org/10.1142/S0252959904000299 Zbl1112.65085
  29. [29] Kruzhkov S.N., Generalized solutions of the Cauchy problem in the large for first-order nonlinear equations, Dokl. Akad. Nauk. SSSR, 1969, 187, 29–32 (in Russian) Zbl0202.37701
  30. [30] Kruzhkov S.N., First-order quasilinear equations in several independent variables, Mat. Sb. (N.S.), 1970, 81(2), 228–255 (in Russian) Zbl0215.16203
  31. [31] Landes R., On the existence of weak solutions for quasilinear equations parabolic initial-boundary value poblems, Proc. Roy. Soc. Edinburgh A, 1981, 89A(3–4), 217–237 
  32. [32] Leray J., Lions J.L., Quelques résultats de Višik sur les problèmes elliptiques non linéaires par les méthodes de Minty-Browder, Bull. Soc. Math. France, 1965, 93, 97–107 Zbl0132.10502
  33. [33] Málek J., Nečas J., Rokyta M., Ružička M., Weak and measure-valued solutions to evolutionary PDEs, Applied Mathematics and Mathematical Computation 13, Chapman & Hall, London, 1996 Zbl0851.35002
  34. [34] Mascia C., Porretta A., Terracina A., Nonhomogeneous Dirichlet problems for degenerate parabolic-Hyperbolic Equations, Arch. Ration. Mech. Anal., 2002, 163(2), 87–124 http://dx.doi.org/10.1007/s002050200184 Zbl1027.35081
  35. [35] Michel A., Vovelle J., Entropy formulation for parabolic degenerate equations with general Dirichlet boundary conditions and application to the convergence of FV methods, SIAM J. Numer. Anal., 2003, 41(6), 2262–2293 http://dx.doi.org/10.1137/S0036142902406612 Zbl1058.35127
  36. [36] Murat F., Soluciones renormalizadas de EDP elipticas non lineales, Cours à l’Université de Séville, Publication R93023, Laboratoire d’Analyse Numérique, Paris VI, France, 1993 
  37. [37] Otto F., Initial-boundary value problem for a scalar conservation law, C.R. Acad. Sci. Paris Sér. I Math., 1996, 322(8), 729–734 Zbl0852.35013
  38. [38] Perthame B., Kinetic Formulation of Conservation laws, Oxford Lecture Series in Mathematics and its Applications, 21, Oxford University Press, Oxford, 2002 Zbl1030.35002
  39. [39] Szepessy A., Measure-valued solutions of scalar conservation laws with boundary conditions, Arch. Rational Mech. Anal., 1989, 107(2), 181–193 http://dx.doi.org/10.1007/BF00286499 Zbl0702.35155
  40. [40] Vallet G., Dirichlet problem for a nonlinear conservation law, Rev. Mat. Complut., 2000, 13(1), 231–250 Zbl0979.35099

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.