Mathematical study of a petroleum-engineering scheme
Robert Eymard; Raphaèle Herbin; Anthony Michel
ESAIM: Mathematical Modelling and Numerical Analysis (2010)
- Volume: 37, Issue: 6, page 937-972
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topEymard, Robert, Herbin, Raphaèle, and Michel, Anthony. "Mathematical study of a petroleum-engineering scheme." ESAIM: Mathematical Modelling and Numerical Analysis 37.6 (2010): 937-972. <http://eudml.org/doc/194199>.
@article{Eymard2010,
abstract = {
Models of two phase flows in porous media, used in petroleum
engineering, lead to a system of two coupled equations with elliptic
and parabolic degenerate terms, and two unknowns,
the saturation and the pressure.
For the purpose of their approximation, a coupled scheme, consisting in
a finite volume method together with
a phase-by-phase upstream weighting scheme, is used in the industrial setting.
This paper presents a mathematical analysis of this coupled scheme, first showing
that it satisfies some a priori estimates:
the saturation is shown to remain in a fixed interval, and
a discrete L2(0,T;H1(Ω)) estimate is proved for both the pressure
and a function of the saturation. Thanks to these properties,
a subsequence of the sequence of approximate solutions is shown to
converge to a weak solution
of the continuous equations
as the size of the discretization tends to zero.
},
author = {Eymard, Robert, Herbin, Raphaèle, Michel, Anthony},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
keywords = {Multiphase flow; Darcy's law; porous media; finite volume scheme.; finite volume scheme},
language = {eng},
month = {3},
number = {6},
pages = {937-972},
publisher = {EDP Sciences},
title = {Mathematical study of a petroleum-engineering scheme},
url = {http://eudml.org/doc/194199},
volume = {37},
year = {2010},
}
TY - JOUR
AU - Eymard, Robert
AU - Herbin, Raphaèle
AU - Michel, Anthony
TI - Mathematical study of a petroleum-engineering scheme
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2010/3//
PB - EDP Sciences
VL - 37
IS - 6
SP - 937
EP - 972
AB -
Models of two phase flows in porous media, used in petroleum
engineering, lead to a system of two coupled equations with elliptic
and parabolic degenerate terms, and two unknowns,
the saturation and the pressure.
For the purpose of their approximation, a coupled scheme, consisting in
a finite volume method together with
a phase-by-phase upstream weighting scheme, is used in the industrial setting.
This paper presents a mathematical analysis of this coupled scheme, first showing
that it satisfies some a priori estimates:
the saturation is shown to remain in a fixed interval, and
a discrete L2(0,T;H1(Ω)) estimate is proved for both the pressure
and a function of the saturation. Thanks to these properties,
a subsequence of the sequence of approximate solutions is shown to
converge to a weak solution
of the continuous equations
as the size of the discretization tends to zero.
LA - eng
KW - Multiphase flow; Darcy's law; porous media; finite volume scheme.; finite volume scheme
UR - http://eudml.org/doc/194199
ER -
References
top- H.W. Alt and E. DiBenedetto, Flow of oil and water through porous media. Astérisque118 (1984) 89–108. Variational methods for equilibrium problems of fluids, Trento (1983).
- H.W. Alt and S. Luckhaus, Quasilinear elliptic-parabolic differential equations. Math. Z.183 (1983) 311–341.
- S.N. Antontsev, A.V. Kazhikhov and V.N. Monakhov, Boundary value problems in mechanics of nonhomogeneous fluids. North-Holland Publishing Co., Amsterdam (1990). Translated from the Russian.
- T. Arbogast, M.F. Wheeler and N.-Y. Zhang, A nonlinear mixed finite element method for a degenerate parabolic equation arising in flow in porous media. SIAM J. Numer. Anal.33 (1996) 1669–1687.
- K. Aziz and A. Settari, Petroleum reservoir simulation. Applied Science Publishers, London (1979).
- J. Bear, Dynamic of flow in porous media. Dover (1967).
- J. Bear, Modeling transport phenomena in porous media, in Environmental studies (Minneapolis, MN, 1992). Springer, New York (1996) 27–63.
- Y. Brenier and J. Jaffré, Upstream differencing for multiphase flow in reservoir simulation. SIAM J. Numer. Anal.28 (1991) 685–696.
- J. Carrillo, Entropy solutions for nonlinear degenerate problems. Arch. Rational. Mech. Anal.147 (1999) 269–361.
- G. Chavent and J. Jaffré, Mathematical models and finite elements for reservoir simulation. Elsevier (1986).
- Z. Chen, Degenerate two-phase incompressible flow. I. Existence, uniqueness and regularity of a weak solution. J. Differential Equations171 (2001) 203–232.
- Z. Chen, Degenerate two-phase incompressible flow. II. Regularity, stability and stabilization. J. Differential Equations186 (2002) 345–376.
- Z. Chen and R. Ewing, Mathematical analysis for reservoir models. SIAM J. Math. Anal.30 (1999) 431–453.
- Z. Chen and R.E. Ewing, Degenerate two-phase incompressible flow. III. Sharp error estimates. Numer. Math.90 (2001) 215–240.
- K. Deimling, Nonlinear functional analysis. Springer-Verlag, Berlin (1985).
- J. Droniou, A density result in sobolev spaces. J. Math. Pures Appl.81 (2002) 697–714.
- G. Enchéry, R. Eymard, R. Masson and S. Wolf, Mathematical and numerical study of an industrial scheme for two-phase flows in porous media under gravity. Comput. Methods Appl. Math.2 (2002) 325–353.
- R.E. Ewing and R.F. Heinemann, Mixed finite element approximation of phase velocities in compositional reservoir simulation. R.E. Ewing Ed., Comput. Meth. Appl. Mech. Engrg.47 (1984) 161–176.
- R.E. Ewing and M.F. Wheeler, Galerkin methods for miscible displacement problems with point sources and sinks — unit mobility ratio case, in Mathematical methods in energy research (Laramie, WY, 1982/1983). SIAM, Philadelphia, PA (1984) 40–58.
- R. Eymard and T. Gallouët, Convergence d'un schéma de type éléments finis–volumes finis pour un système formé d'une équation elliptique et d'une équation hyperbolique. RAIRO Modél. Math. Anal. Numér.27 (1993) 843–861.
- R. Eymard, T. Gallouët, M. Ghilani and R. Herbin, Error estimates for the approximate solutions of a nonlinear hyperbolic equation given by finite volume schemes. IMA J. Numer. Anal.18 (1998) 563–594.
- R. Eymard, T. Gallouët, R. Herbin and A. Michel, Convergence. Numer. Math.92 (2002) 41–82.
- R. Eymard, T. Gallouët, D. Hilhorst and Y. Naït Slimane, Finite volumes and nonlinear diffusion equations. RAIRO Modél. Math. Anal. Numér.32 (1998) 747–761.
- R. Eymard, T. Gallouët and R. Herbin, Finite volume methods, in Handbook of numerical analysis, Vol. VII. North-Holland, Amsterdam (2000) 713–1020.
- R. Eymard, T. Gallouët and R. Herbin, Error estimate for approximate solutions of a nonlinear convection-diffusion problem. Adv. Differential Equations7 (2002) 419–440.
- P. Fabrie and T. Gallouët, Modeling wells in porous media flow. Math. Models Methods Appl. Sci.10 (2000) 673–709.
- X. Feng, On existence and uniqueness results for a coupled system modeling miscible displacement in porous media. J. Math. Anal. Appl.194 (1995) 883–910.
- P.A. Forsyth, A control volume finite element method for local mesh refinements, in SPE Symposium on Reservoir Simulation. number SPE 18415, Texas: Society of Petroleum Engineers Richardson Ed., Houston, Texas (February 1989) 85–96.
- P.A. Forsyth, A control volume finite element approach to NAPL groundwater contamination. SIAM J. Sci. Statist. Comput.12 (1991) 1029–1057.
- Gérard Gagneux and Monique Madaune-Tort, Analyse mathématique de modèles non linéaires de l'ingénierie pétrolière. Springer-Verlag, Berlin (1996). With a preface by Charles-Michel Marle.
- R. Helmig, Multiphase Flow and Transport Processes in the Subsurface: A Contribution to the Modeling of Hydrosystems. Springer-Verlag Berlin Heidelberg (1997). P. Schuls (Translator).
- D. Kroener and S. Luckhaus, Flow of oil and water in a porous medium. J. Differential Equations55 (1984) 276–288.
- S.N. Kružkov and S.M. Sukorjanskiĭ, Boundary value problems for systems of equations of two-phase filtration type; formulation of problems, questions of solvability, justification of approximate methods. Mat. Sb. (N.S.)104 (1977) 69–88, 175–176.
- A. Michel, A finite volume scheme for the simulation of two-phase incompressible flow in porous media. SIAM J. Numer. Anal.41 (2003) 1301–1317.
- A. Michel, Convergence de schémas volumes finis pour des problèmes de convection diffusion non linéaires. Ph.D. thesis, Université de Provence, France (2001).
- D.W. Peaceman, Fundamentals of Numerical Reservoir Simulation. Elsevier Scientific Publishing Co (1977).
- A. Pfertzel, Sur quelques schémas numériques pour la résolution des écoulements multiphasiques en milieu poreux. Ph.D. thesis, Universités Paris 6, France (1987).
- M.H. Vignal, Convergence of a finite volume scheme for an elliptic-hyperbolic system. RAIRO Modél. Math. Anal. Numér.30 (1996) 841–872.
- H. Wang, R.E. Ewing and T.F. Russell, Eulerian-Lagrangian localized adjoint methods for convection-diffusion equations and their convergence analysis. IMA J. Numer. Anal.15 (1995) 405–459.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.