Groups whose all subgroups are ascendant or self-normalizing
Leonid Kurdachenko; Javier Otal; Alessio Russo; Giovanni Vincenzi
Open Mathematics (2011)
- Volume: 9, Issue: 2, page 420-432
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topLeonid Kurdachenko, et al. "Groups whose all subgroups are ascendant or self-normalizing." Open Mathematics 9.2 (2011): 420-432. <http://eudml.org/doc/269092>.
@article{LeonidKurdachenko2011,
abstract = {This paper studies groups G whose all subgroups are either ascendant or self-normalizing. We characterize the structure of such G in case they are locally finite. If G is a hyperabelian group and has the property, we show that every subgroup of G is in fact ascendant provided G is locally nilpotent or non-periodic. We also restrict our study replacing ascendant subgroups by permutable subgroups, which of course are ascendant [Stonehewer S.E., Permutable subgroups of infinite groups, Math. Z., 1972, 125(1), 1–16].},
author = {Leonid Kurdachenko, Javier Otal, Alessio Russo, Giovanni Vincenzi},
journal = {Open Mathematics},
keywords = {Gruenberg group; Baer group; Subnormal subgroup; Ascendant subgroup; Abnormal subgroup; Pronormal subgroup; Self-normalizing subgroup; Permutable subgroup; ascendant subgroups; locally finite groups; permutable subgroups; self-normalizing subgroups; subnormal subgroups},
language = {eng},
number = {2},
pages = {420-432},
title = {Groups whose all subgroups are ascendant or self-normalizing},
url = {http://eudml.org/doc/269092},
volume = {9},
year = {2011},
}
TY - JOUR
AU - Leonid Kurdachenko
AU - Javier Otal
AU - Alessio Russo
AU - Giovanni Vincenzi
TI - Groups whose all subgroups are ascendant or self-normalizing
JO - Open Mathematics
PY - 2011
VL - 9
IS - 2
SP - 420
EP - 432
AB - This paper studies groups G whose all subgroups are either ascendant or self-normalizing. We characterize the structure of such G in case they are locally finite. If G is a hyperabelian group and has the property, we show that every subgroup of G is in fact ascendant provided G is locally nilpotent or non-periodic. We also restrict our study replacing ascendant subgroups by permutable subgroups, which of course are ascendant [Stonehewer S.E., Permutable subgroups of infinite groups, Math. Z., 1972, 125(1), 1–16].
LA - eng
KW - Gruenberg group; Baer group; Subnormal subgroup; Ascendant subgroup; Abnormal subgroup; Pronormal subgroup; Self-normalizing subgroup; Permutable subgroup; ascendant subgroups; locally finite groups; permutable subgroups; self-normalizing subgroups; subnormal subgroups
UR - http://eudml.org/doc/269092
ER -
References
top- [1] Baer R., Situation der Untergruppen und Struktur der Gruppe, Sitzungsber. Heidelb. Akad. Wiss., 1933, 2, 12–17 Zbl0007.05301
- [2] Ballester-Bolinches A., Kurdachenko L.A., Otal J., Pedraza T., Infinite groups with many permutable subgroups, Rev. Mat. Iberoam., 2008, 24(3), 745–764 Zbl1175.20036
- [3] Belyaev V.V., Groups of Miller-Moreno type, Sibirsk. Math. Zh., 1979, 19(3), 509–514 (in Russian) Zbl0409.20027
- [4] Belyaev V.V., Sesekin N.F., Infinite groups of Miller-Moreno type, Acta Acad. Math. Sci. Hungar., 1975, 26(3–4), 369–376 (in Russian) http://dx.doi.org/10.1007/BF01902346
- [5] Casolo C., Torsion-free groups in which every subgroup is subnormal, Rend. Circ. Mat. Palermo, 2001, 50(2), 321–324 http://dx.doi.org/10.1007/BF02844986 Zbl1138.20306
- [6] Chernikov S.N., Groups with given properties of systems of infinite subgroups, Ukrainian Math. J., 1967, 19(6), 715–731 http://dx.doi.org/10.1007/BF01105854
- [7] Chernikov S.N., On normalizer condition, Mat. Zametki, 1968, 3(1), 45–50 (in Russian) Zbl0186.32004
- [8] De Falco M., Kurdachenko L.A., Subbotin I.Ya., Groups with only abnormal and subnormal subgroups, Atti Sem. Mat. Fis. Univ. Modena, 1988, 46(2), 435–442
- [9] De Falco M., Musella C., A normalizer condition for modular subgroups, In: Advances in Group Theory, Aracne, Rome, 2002, 163–172 Zbl1057.20023
- [10] Dedekind R., Über Gruppen, deren sämmtliche Theiler Normaltheiler sind, Math. Ann., 1897, 48(4), 548–561 http://dx.doi.org/10.1007/BF01447922
- [11] Ebert G., Bauman S., A note on subnormal and abnormal chains, J. Algebra, 1975, 36(2), 287–293 http://dx.doi.org/10.1016/0021-8693(75)90103-9 Zbl0314.20019
- [12] Fattahi A., Groups with only normal and abnormal subgroups, J. Algebra, 1974, 28(1), 15–19 http://dx.doi.org/10.1016/0021-8693(74)90019-2 Zbl0274.20022
- [13] Franciosi S., de Giovanni F., On groups with many subnormal subgroups, Note Mat., 1993, 13(1), 99–105 Zbl0809.20019
- [14] Giordano G., Gruppi con normalizzatori estremali, Matematiche (Catania), 1971, 26, 291–296
- [15] Gruenberg K.W., The Engel elements of a soluble group, Illinois J. Math., 1959, 3(2), 151–168 Zbl0092.02102
- [16] Heineken H., Kurdachenko L.A., Groups with subnormality for all subgroups that are not finitely generated, Ann. Mat. Pura Appl., 1995, 169, 203–232 http://dx.doi.org/10.1007/BF01759354 Zbl0848.20023
- [17] Huppert B., Zur Sylowstruktur auflösbarer Gruppen, Arch. Math. (Basel), 1961, 12, 161–169
- [18] Kurdachenko L.A., Smith H., Groups with all subgroups either subnormal or self-normalizing, J. Pure Appl. Algebra, 2005, 196(2–3), 271–278 http://dx.doi.org/10.1016/j.jpaa.2004.08.005 Zbl1078.20026
- [19] Miller G.A., Moreno H., Non-abelian groups in which every subgroup is abelian, Trans. Amer. Math. Soc., 1903, 4(4), 389–404 Zbl34.0173.01
- [20] Möhres W., Auflösbarkeit von Gruppen, deren Untergruppen alle subnormal sind, Arch. Math. (Basel), 1990, 54(3), 232–235 Zbl0663.20027
- [21] Plotkin B.I., On the theory of locally nilpotent groups, Dokl. Akad. Nauk SSSR, 1951, 76, 639–641 (in Russian)
- [22] Rose J.S., A Course on Group Theory, Cambridge University Press, Cambridge-New York-Melbourne, 1978 Zbl0371.20001
- [23] Roseblade J.E., On groups in which every subgroup is subnormal, J. Algebra, 1965, 2(4), 402–412 http://dx.doi.org/10.1016/0021-8693(65)90002-5 Zbl0135.04901
- [24] Schmidt O.Yu., Groups whose all subgroups are special, Mat. Sb., 1924, 31(3–4), 366–372 (in Russian)
- [25] Schmidt O.Yu., On infinite special groups, Mat. Sb., 1940, 8(50)(3), 363–375 (in Russian) Zbl66.0070.01
- [26] Schmidt R., Subgroup Lattices of Groups, de Gruyter Exp. Math., 14, Walter de Gruyter, Berlin, 1994
- [27] Shumyatsky P., Locally finite groups with an automorphism whose centralizer is small, In: Topics in Infinite Groups, Quad. Mat., 8, Dept. Math., Seconda Univ. Napoli, Caserta, 2001, 278–296 Zbl1038.20014
- [28] Smith H., Torsion-free groups with all subgroups subnormal, Arch. Math. (Basel), 2001, 76(1), 1–6 Zbl0982.20018
- [29] Smith H., Torsion-free groups with all non-nilpotent subgroups subnormal, In: Topics in Infinite Groups, Quad. Mat., 8, Dept. Math., Seconda Univ. Napoli, Caserta, 2001, 297–308 Zbl1017.20017
- [30] Smith H., Groups with all non-nilpotent subgroups subnormal, In: Topics in Infinite Groups, Quad. Mat., 8, Dept. Math., Seconda Univ. Napoli, Caserta, 2001, 309–326 Zbl1017.20018
- [31] Stonehewer S.E., Permutable subgroups of infinite groups, Math. Z., 1972, 125(1), 1–16 http://dx.doi.org/10.1007/BF01111111 Zbl0219.20021
- [32] Tomkinson M.J., FC-Groups, Pitman Res. Notes Math. Ser., 96, Pitman, Boston-London-Melbourne, 1994
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.