Implicit a posteriori error estimation using patch recovery techniques

Tamás Horváth; Ferenc Izsák

Open Mathematics (2012)

  • Volume: 10, Issue: 1, page 55-72
  • ISSN: 2391-5455

Abstract

top
We develop implicit a posteriori error estimators for elliptic boundary value problems. Local problems are formulated for the error and the corresponding Neumann type boundary conditions are approximated using a new family of gradient averaging procedures. Convergence properties of the implicit error estimator are discussed independently of residual type error estimators, and this gives a freedom in the choice of boundary conditions. General assumptions are elaborated for the gradient averaging which define a family of implicit a posteriori error estimators. We will demonstrate the performance and the favor of the method through numerical experiments.

How to cite

top

Tamás Horváth, and Ferenc Izsák. "Implicit a posteriori error estimation using patch recovery techniques." Open Mathematics 10.1 (2012): 55-72. <http://eudml.org/doc/269098>.

@article{TamásHorváth2012,
abstract = {We develop implicit a posteriori error estimators for elliptic boundary value problems. Local problems are formulated for the error and the corresponding Neumann type boundary conditions are approximated using a new family of gradient averaging procedures. Convergence properties of the implicit error estimator are discussed independently of residual type error estimators, and this gives a freedom in the choice of boundary conditions. General assumptions are elaborated for the gradient averaging which define a family of implicit a posteriori error estimators. We will demonstrate the performance and the favor of the method through numerical experiments.},
author = {Tamás Horváth, Ferenc Izsák},
journal = {Open Mathematics},
keywords = {Implicit a posteriori error estimation; Finite element method; Gradient recovery; implicit a posteriori error estimators; finite element method; gradient recovery; elliptic boundary value problem; convergence; numerical examples},
language = {eng},
number = {1},
pages = {55-72},
title = {Implicit a posteriori error estimation using patch recovery techniques},
url = {http://eudml.org/doc/269098},
volume = {10},
year = {2012},
}

TY - JOUR
AU - Tamás Horváth
AU - Ferenc Izsák
TI - Implicit a posteriori error estimation using patch recovery techniques
JO - Open Mathematics
PY - 2012
VL - 10
IS - 1
SP - 55
EP - 72
AB - We develop implicit a posteriori error estimators for elliptic boundary value problems. Local problems are formulated for the error and the corresponding Neumann type boundary conditions are approximated using a new family of gradient averaging procedures. Convergence properties of the implicit error estimator are discussed independently of residual type error estimators, and this gives a freedom in the choice of boundary conditions. General assumptions are elaborated for the gradient averaging which define a family of implicit a posteriori error estimators. We will demonstrate the performance and the favor of the method through numerical experiments.
LA - eng
KW - Implicit a posteriori error estimation; Finite element method; Gradient recovery; implicit a posteriori error estimators; finite element method; gradient recovery; elliptic boundary value problem; convergence; numerical examples
UR - http://eudml.org/doc/269098
ER -

References

top
  1. [1] Adams R.A., Fournier J.J.F., Sobolev Spaces, 2nd ed., Pure Appl. Math. (Amst.), 140, Academic Press, Amsterdam, 2003 
  2. [2] Ainsworth M., The influence and selection of subspaces for a posteriori error estimators, Numer. Math., 1996, 73(4), 399–418 http://dx.doi.org/10.1007/s002110050198 Zbl0873.65099
  3. [3] Ainsworth M., Craig A., A posteriori error estimators in the finite element method, Numer. Math., 1992, 60(4), 429–463 Zbl0757.65109
  4. [4] Ainsworth M., Oden J.T., A Posteriori Error Estimation in Finite Element Analysis, Pure Appl. Math. (N.Y.), John Wiley & Sons, New York, 2000 http://dx.doi.org/10.1002/9781118032824 Zbl1008.65076
  5. [5] Ainsworth M., Rankin R., Fully computable bounds for the error in nonconforming finite element approximations of arbitrary order on triangular elements, SIAM J. Numer. Anal., 2008, 46(6), 3207–3232 http://dx.doi.org/10.1137/07070838X Zbl1180.65141
  6. [6] Babuška I., Rheinboldt W.C., Error estimates for adaptive finite element computations, SIAM J. Numer. Anal., 1978, 15(4), 736–754 http://dx.doi.org/10.1137/0715049 Zbl0398.65069
  7. [7] Bank R.E., Weiser A., Some a posteriori error estimators for elliptic partial differential equations, Math. Comp., 1985, 44(170), 283–301 http://dx.doi.org/10.1090/S0025-5718-1985-0777265-X Zbl0569.65079
  8. [8] Bank R.E., Xu J., Asymptotically exact a posteriori error estimators I. Grids with superconvergence, SIAM J. Numer. Anal., 2003, 41(6), 2294–2312 http://dx.doi.org/10.1137/S003614290139874X Zbl1058.65116
  9. [9] Bank R.E., Xu J., Asymptotically exact a posteriori error estimators II. General unstructured grids, SIAM J. Numer. Anal., 2003, 41(6), 2313–2332 http://dx.doi.org/10.1137/S0036142901398751 Zbl1058.65117
  10. [10] Brenner S.C., Scott L.R., The Mathematical Theory of Finite Element Methods, 2nd ed., Texts Appl. Math., 15, Springer, New York, 2002 Zbl1012.65115
  11. [11] Carstensen C., Some remarks on the history and future of averaging techniques in a posteriori finite element error analysis, ZAMM Z. Angew. Math. Mech., 2004, 84(1), 3–21 http://dx.doi.org/10.1002/zamm.200410101 Zbl1073.65120
  12. [12] Carstensen C., A unifying theory of a posteriori finite element error control, Numer. Math., 2005, 100(4), 617–637 http://dx.doi.org/10.1007/s00211-004-0577-y Zbl1100.65089
  13. [13] Carstensen C., Bartels S., Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids I. Low order conforming, nonconforming, and mixed FEM, Math. Comp., 2002, 71(239), 945–969 http://dx.doi.org/10.1090/S0025-5718-02-01402-3 Zbl0997.65126
  14. [14] Carstensen C., Orlando A., Valdman J., A convergent adaptive finite element method for the primal problem of elastoplasticity, Internat. J. Numer. Methods Engrg., 2006, 67(13), 1851–1887 http://dx.doi.org/10.1002/nme.1686 Zbl1127.74040
  15. [15] Demkowicz L., Computing with hp-Adaptive Finite Elements. I, Chapman Hall/CRC Appl. Math. Nonlinear Sci. Ser., Chapman&Hall/CRC, Boca Raton, 2007 
  16. [16] Ern A., Guermond J.-L., Theory and Practice of Finite Elements, Appl. Math. Sci., 159, Springer, New York, 2004 Zbl1059.65103
  17. [17] Hannukainen A., Korotov S., Křížek M., Nodal O(h 4)-superconvergence in 3D by averaging piecewise linear, bilinear, and trilinear FE approximations, J. Comput. Math., 2010, 28(1), 1–10 Zbl1224.65247
  18. [18] Harutyunyan D., Izsák F., van der Vegt J.J.W., Botchev, M.A., Adaptive finite element techniques for the Maxwell equations using implicit a posteriori error estimates, Comput. Methods Appl. Mech. Engrg., 2008, 197(17–18), 1620–1638 http://dx.doi.org/10.1016/j.cma.2007.12.006 Zbl1194.78054
  19. [19] Hlaváček I., Křížek M., Optimal interior and local error estimates of a recovered gradient of linear elements on nonuniform triangulations, J. Comput. Math., 1996, 14(4), 345–362 Zbl0861.65091
  20. [20] Huang Y., Xu J., Superconvergence of quadratic finite elements on mildly structured grids, Math. Comp., 2008, 77(263), 1253–1268 http://dx.doi.org/10.1090/S0025-5718-08-02051-6 Zbl1195.65193
  21. [21] Izsák F., Harutyunyan D., van der Vegt J.J.W., Implicit a posteriori error estimates for the Maxwell equations, Math. Comp., 2008, 77(263), 1355–1386 http://dx.doi.org/10.1090/S0025-5718-08-02046-2 Zbl1234.78009
  22. [22] Jin H., Prudhomme S., A posteriori error estimation of steady-state finite element solutions of the Navier-Stokes equations by a subdomain residual method, Comput. Methods Appl. Mech. Engrg., 1998, 159(1–2), 19–48 http://dx.doi.org/10.1016/S0045-7825(98)80102-3 Zbl0953.76049
  23. [23] Karátson J., Korotov S., Sharp upper global a posteriori error estimates for nonlinear elliptic variational problems, Appl. Math., 2009, 54(4), 297–336 http://dx.doi.org/10.1007/s10492-009-0020-x Zbl1212.65249
  24. [24] Korotov S., Neittaanmäki P., Repin S., A posteriori error estimation of goal-oriented quantities by the superconvergence patch recovery, J. Numer. Math., 2003, 11(1), 33–59 Zbl1039.65075
  25. [25] Křížek M., Neittaanmäki P., Superconvergence phenomenon in the finite element method arising from averaging gradients, Numer. Math., 1984, 45(1), 105–116 http://dx.doi.org/10.1007/BF01379664 Zbl0575.65104
  26. [26] Ladevèze P., Leguillon D., Error estimate procedure in the finite element method and applications, SIAM J. Numer. Anal., 1983, 20(3), 485–509 http://dx.doi.org/10.1137/0720033 Zbl0582.65078
  27. [27] McLean W., Strongly Elliptic Systems and Boundary Integral Equations, Cambridge University Press, Cambridge, 2000 Zbl0948.35001
  28. [28] Neittaanmäki P., Repin S., Reliable Methods for Computer Simulation, Stud. Math. Appl., 33, Elsevier Science B.V., Amsterdam, 2004 Zbl1076.65093
  29. [29] Repin S., A Posteriori Estimates for Partial Differential Equations, Radon Ser. Comput. Appl. Math., 4, de Gruyter, Berlin, 2008 
  30. [30] Schöberl J., A posteriori error estimates for Maxwell equations, Math. Comp., 2008, 77(262), 633–649 http://dx.doi.org/10.1090/S0025-5718-07-02030-3 Zbl1136.78016
  31. [31] Schwab Ch., p- and hp-Finite Element Methods, Numer. Math. Sci. Comput., Clarendon Press, Oxford University Press, New York, 1998 
  32. [32] Verfürth R., A Review of a Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques, Wiley-Teubner Ser. Adv. Numer. Math., John Wiley & Sons, Teubner, Chichester-Stuttgart, 1996 
  33. [33] Verfürth R., A posteriori error estimators for convection-diffusion equations, Numer. Math., 1998, 80(4), 641–663 http://dx.doi.org/10.1007/s002110050381 Zbl0913.65095
  34. [34] Vohralík M., A posteriori error estimates for lowest-order mixed finite element discretizations of convection-diffusionreaction equations, SIAM J. Numer. Anal., 2007, 45(4), 1570–1599 http://dx.doi.org/10.1137/060653184 Zbl1151.65084
  35. [35] Wahlbin L.B., Superconvergence in Galerkin Finite Element Methods, Lecture Notes in Math., 1605, Springer, Berlin, 1995 Zbl0826.65092
  36. [36] Zienkiewicz O.C., Zhu J.Z., The superconvergent patch recovery and a posteriori error estimates I. The recovery technique, Internat. J. Numer. Methods Engrg., 1992, 33(7), 1331–1364 http://dx.doi.org/10.1002/nme.1620330702 Zbl0769.73084
  37. [37] Zienkiewicz O.C., Zhu J.Z., The superconvergent patch recovery and a posteriori error estimates II. Error estimates and adaptivity, Internat. J. Numer. Methods Engrg., 1992, 33(7), 1365–1382 http://dx.doi.org/10.1002/nme.1620330703 Zbl0769.73085

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.