Precise small deviations in L 2 of some Gaussian processes appearing in the regression context

Alisa Kirichenko; Ya. Nikitin

Open Mathematics (2014)

  • Volume: 12, Issue: 11, page 1674-1686
  • ISSN: 2391-5455

Abstract

top
We find precise small deviation asymptotics with respect to the Hilbert norm for some special Gaussian processes connected to two regression schemes studied by MacNeill and his coauthors. In addition, we also obtain precise small deviation asymptotics for the detrended Brownian motion and detrended Slepian process.

How to cite

top

Alisa Kirichenko, and Ya. Nikitin. "Precise small deviations in L 2 of some Gaussian processes appearing in the regression context." Open Mathematics 12.11 (2014): 1674-1686. <http://eudml.org/doc/269122>.

@article{AlisaKirichenko2014,
abstract = {We find precise small deviation asymptotics with respect to the Hilbert norm for some special Gaussian processes connected to two regression schemes studied by MacNeill and his coauthors. In addition, we also obtain precise small deviation asymptotics for the detrended Brownian motion and detrended Slepian process.},
author = {Alisa Kirichenko, Ya. Nikitin},
journal = {Open Mathematics},
keywords = {Gaussian process; Small deviations; Precise asymptotics; small deviations; Gaussian processes; detrended Brownian motion; detrended Slepian process},
language = {eng},
number = {11},
pages = {1674-1686},
title = {Precise small deviations in L 2 of some Gaussian processes appearing in the regression context},
url = {http://eudml.org/doc/269122},
volume = {12},
year = {2014},
}

TY - JOUR
AU - Alisa Kirichenko
AU - Ya. Nikitin
TI - Precise small deviations in L 2 of some Gaussian processes appearing in the regression context
JO - Open Mathematics
PY - 2014
VL - 12
IS - 11
SP - 1674
EP - 1686
AB - We find precise small deviation asymptotics with respect to the Hilbert norm for some special Gaussian processes connected to two regression schemes studied by MacNeill and his coauthors. In addition, we also obtain precise small deviation asymptotics for the detrended Brownian motion and detrended Slepian process.
LA - eng
KW - Gaussian process; Small deviations; Precise asymptotics; small deviations; Gaussian processes; detrended Brownian motion; detrended Slepian process
UR - http://eudml.org/doc/269122
ER -

References

top
  1. [1] Adler, R. J. An introduction to continuity, extrema, and related topics for general Gaussian processes. IMS Lect. Notes, 12 (1990), Hayword. Zbl0747.60039
  2. [2] Ai, X., Li, W. V., Liu, G. Karhunen-Loève expansions for detrended Brownian motion. Statist. & Probab. Lett., 2012, 82(7), 1235–1241. http://dx.doi.org/10.1016/j.spl.2012.03.007 Zbl1259.60093
  3. [3] Beghin, L., Nikitin, Ya. Yu., Orsingher, E. Exact small ball constants for some Gaussian processes under the L 2-norm. Journ. of Math. Sci., 2005, 128(1), 2493–2502. http://dx.doi.org/10.1007/s10958-005-0197-9 Zbl1078.60028
  4. [4] Berlinet, A. F., Servien, R. Necessary and sufficient condition for the existence of a limit distribution of the nearestneighbour density estimator. Journ. of Nonparam. Statist., 2011, 23(3), 633–643. http://dx.doi.org/10.1080/10485252.2011.567334 Zbl1284.62248
  5. [5] Dunker T., Lifshits M. A., Linde W. Small deviations of sums of independent variables. In: High Dimensional Probability. Progress in Probability, 1998, 43, Birkhaåuser, Basel, 59–74. http://dx.doi.org/10.1007/978-3-0348-8829-5_4 Zbl0902.60039
  6. [6] Fatalov, V. R. Ergodic means for large values of T and exact asymptotics of small deviations for a multi-dimensional Wiener process. Izvestiya: Mathematics, 2013, 77(6), 1224–1259. http://dx.doi.org/10.1070/IM2013v077n06ABEH002675 Zbl1288.60030
  7. [7] Fatalov, V. R. Small deviations for two classes of Gaussian stationary processes and L p-functionals, 0 < p ≤ ∞. Problems Inform. Transmission, 2010, 46(1), 62–85. http://dx.doi.org/10.1134/S0032946010010060 Zbl1205.93140
  8. [8] Ferraty F., Vieu Ph. Nonparametric functional data analysis. Berlin: Springer, 2006. Zbl1119.62046
  9. [9] Fill, J. A., Torcaso, F. Asymptotic analysis via Mellin transforms for small deviations in L 2-norm of integrated Brownian sheets. Probab. Theory Relat. Fields, 2003, 130(2), 259–288. Zbl1052.60027
  10. [10] Gao, F., Hannig, J., Lee, T. -Y., Torcaso, F. Laplace transforms via Hadamard factorization with applications to small ball probabilities. Electr. Journ. of Probab., 2003, 8(13), 1–20. Zbl1064.60061
  11. [11] Gao, F., Hannig, J., Torcaso, F., Comparison Theorems for Small Deviations of random series. Electr. Journ. of Probab. 2003, 8(1), 1–17. Zbl1065.60040
  12. [12] Gao, F., Hannig, J., Torcaso, F. Integrated Brownian motions and Exact L 2-small balls. Ann. of Probab. 2003, 31(3), 1320–1337. http://dx.doi.org/10.1214/aop/1055425782 Zbl1047.60030
  13. [13] Gao, F., Hannig, J., Lee, T. -Y., Torcaso, F. Exact L 2-small balls of Gaussian processes. Journ. of Theoret. Probab., 2004, 17(2), 503–520. http://dx.doi.org/10.1023/B:JOTP.0000020705.28185.4c Zbl1049.60028
  14. [14] Jandhyala, V. K., Jiang, P. L. Eigenvalues of a Fredholm integral operator and applications to problems of statistical inference. Journ. Integr. Eq. Appl., 1996, 8(4), 413–427. http://dx.doi.org/10.1216/jiea/1181075971 Zbl0885.45001
  15. [15] Jandhyala, V. K., MacNeill, I. B. Residual partial sum limit process for regression models with applications to detecting parameter changes at unknown times. Stoch. Proc. Appl., 1989, 33(2), 309–323. http://dx.doi.org/10.1016/0304-4149(89)90045-8 Zbl0679.62056
  16. [16] Kharinski, P. A., Nikitin, Ya. Yu. Sharp small deviation asymptotics in L 2-norm for a class of Gaussian processes. Journ. Math. Sci., 2006, 133(3), 1328–1332. http://dx.doi.org/10.1007/s10958-006-0042-9 
  17. [17] Li, W. V. Comparison results for the lower tail of Gaussian seminorms. Journ. Theor. Prob., 1992, 5(1), 1–31. http://dx.doi.org/10.1007/BF01046776 Zbl0743.60009
  18. [18] Li W. V., Shao Q. M. Gaussian processes: inequalities, small ball probabilities and applications. Stochastic Processes: Theory and Methods. Amsterdam: North-Holland, 2001, 533–597. (Handbook Statist., v. 19.) Zbl0987.60053
  19. [19] Lifshits, M. A. Gaussian Random Functions. Dordrecht: Kluwer, 1995. http://dx.doi.org/10.1007/978-94-015-8474-6 
  20. [20] Lifshits, M. Lectures on Gaussian processes. SpringerBriefs in Mathematics, Springer, 2012. http://dx.doi.org/10.1007/978-3-642-24939-6 
  21. [21] Lifshits, M. A. Bibliography on small deviation probabilities, 2014. Available at http://www.proba.jussieu.fr/pageperso/smalldev/biblio.pdf. 
  22. [22] MacNeill, I. B. Properties of sequences of partial sums of polynomial regression residuals with applications to tests for change of regression at unknown times. Ann. Stat., 1978, 6(2), 422–433. http://dx.doi.org/10.1214/aos/1176344133 Zbl0375.62064
  23. [23] Nazarov, A. I. On the sharp constant in the small ball asymptotics of some Gaussian processes under L 2-norm. Journ. of Math. Sci., 2003, 117(3), 4185–4210. http://dx.doi.org/10.1023/A:1024868604219 
  24. [24] Nazarov, A. I. Exact L 2-small ball asymptotics of Gaussian processes and the spectrum of boundary-value problems. Journ. of Theor. Prob., 2009, 22(3), 640–665. http://dx.doi.org/10.1007/s10959-008-0173-7 Zbl1187.60025
  25. [25] Nazarov, A. I. On a set of transformations of Gaussian random functions. Theor. Probab. Appl., 2009, 54(2), 203–216. http://dx.doi.org/10.1137/S0040585X97984103 Zbl1214.60011
  26. [26] Nazarov, A. I., Nikitin, Ya. Yu. Exact L 2-small ball behavior of integrated Gaussian processes and spectral asymptotics of boundary value problems. Probab. Theor. Relat. Fields, 2004, 129(4), 469–494. http://dx.doi.org/10.1007/s00440-004-0337-z Zbl1051.60041
  27. [27] Nikitin, Ya. Yu., Pusev, R. S. Exact Small Deviation Asymptotics for Some Brownian Functionals. Theor. Probab. Appl., 2013, 57(1), 60–81. http://dx.doi.org/10.1137/S0040585X97985790 Zbl1278.60072
  28. [28] Slepian, D. First passage time for a particular Gaussian process. Ann. Math. Stat., 1961, 32(2), 610–612. http://dx.doi.org/10.1214/aoms/1177705068 Zbl0113.12403
  29. [29] Titchmarsh, E. C. The theory of functions. 2nd ed. London: Oxford University Press, 1939. Zbl0022.14602
  30. [30] van der Vaart A. W., van Zanten H. Rates of contraction of posterior distributions based on Gaussian process priors. Ann. Statist., 2008, 36(3), 1435–1463. http://dx.doi.org/10.1214/009053607000000613 Zbl1141.60018

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.