Precise small deviations in L 2 of some Gaussian processes appearing in the regression context
Open Mathematics (2014)
- Volume: 12, Issue: 11, page 1674-1686
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topAlisa Kirichenko, and Ya. Nikitin. "Precise small deviations in L 2 of some Gaussian processes appearing in the regression context." Open Mathematics 12.11 (2014): 1674-1686. <http://eudml.org/doc/269122>.
@article{AlisaKirichenko2014,
abstract = {We find precise small deviation asymptotics with respect to the Hilbert norm for some special Gaussian processes connected to two regression schemes studied by MacNeill and his coauthors. In addition, we also obtain precise small deviation asymptotics for the detrended Brownian motion and detrended Slepian process.},
author = {Alisa Kirichenko, Ya. Nikitin},
journal = {Open Mathematics},
keywords = {Gaussian process; Small deviations; Precise asymptotics; small deviations; Gaussian processes; detrended Brownian motion; detrended Slepian process},
language = {eng},
number = {11},
pages = {1674-1686},
title = {Precise small deviations in L 2 of some Gaussian processes appearing in the regression context},
url = {http://eudml.org/doc/269122},
volume = {12},
year = {2014},
}
TY - JOUR
AU - Alisa Kirichenko
AU - Ya. Nikitin
TI - Precise small deviations in L 2 of some Gaussian processes appearing in the regression context
JO - Open Mathematics
PY - 2014
VL - 12
IS - 11
SP - 1674
EP - 1686
AB - We find precise small deviation asymptotics with respect to the Hilbert norm for some special Gaussian processes connected to two regression schemes studied by MacNeill and his coauthors. In addition, we also obtain precise small deviation asymptotics for the detrended Brownian motion and detrended Slepian process.
LA - eng
KW - Gaussian process; Small deviations; Precise asymptotics; small deviations; Gaussian processes; detrended Brownian motion; detrended Slepian process
UR - http://eudml.org/doc/269122
ER -
References
top- [1] Adler, R. J. An introduction to continuity, extrema, and related topics for general Gaussian processes. IMS Lect. Notes, 12 (1990), Hayword. Zbl0747.60039
- [2] Ai, X., Li, W. V., Liu, G. Karhunen-Loève expansions for detrended Brownian motion. Statist. & Probab. Lett., 2012, 82(7), 1235–1241. http://dx.doi.org/10.1016/j.spl.2012.03.007 Zbl1259.60093
- [3] Beghin, L., Nikitin, Ya. Yu., Orsingher, E. Exact small ball constants for some Gaussian processes under the L 2-norm. Journ. of Math. Sci., 2005, 128(1), 2493–2502. http://dx.doi.org/10.1007/s10958-005-0197-9 Zbl1078.60028
- [4] Berlinet, A. F., Servien, R. Necessary and sufficient condition for the existence of a limit distribution of the nearestneighbour density estimator. Journ. of Nonparam. Statist., 2011, 23(3), 633–643. http://dx.doi.org/10.1080/10485252.2011.567334 Zbl1284.62248
- [5] Dunker T., Lifshits M. A., Linde W. Small deviations of sums of independent variables. In: High Dimensional Probability. Progress in Probability, 1998, 43, Birkhaåuser, Basel, 59–74. http://dx.doi.org/10.1007/978-3-0348-8829-5_4 Zbl0902.60039
- [6] Fatalov, V. R. Ergodic means for large values of T and exact asymptotics of small deviations for a multi-dimensional Wiener process. Izvestiya: Mathematics, 2013, 77(6), 1224–1259. http://dx.doi.org/10.1070/IM2013v077n06ABEH002675 Zbl1288.60030
- [7] Fatalov, V. R. Small deviations for two classes of Gaussian stationary processes and L p-functionals, 0 < p ≤ ∞. Problems Inform. Transmission, 2010, 46(1), 62–85. http://dx.doi.org/10.1134/S0032946010010060 Zbl1205.93140
- [8] Ferraty F., Vieu Ph. Nonparametric functional data analysis. Berlin: Springer, 2006. Zbl1119.62046
- [9] Fill, J. A., Torcaso, F. Asymptotic analysis via Mellin transforms for small deviations in L 2-norm of integrated Brownian sheets. Probab. Theory Relat. Fields, 2003, 130(2), 259–288. Zbl1052.60027
- [10] Gao, F., Hannig, J., Lee, T. -Y., Torcaso, F. Laplace transforms via Hadamard factorization with applications to small ball probabilities. Electr. Journ. of Probab., 2003, 8(13), 1–20. Zbl1064.60061
- [11] Gao, F., Hannig, J., Torcaso, F., Comparison Theorems for Small Deviations of random series. Electr. Journ. of Probab. 2003, 8(1), 1–17. Zbl1065.60040
- [12] Gao, F., Hannig, J., Torcaso, F. Integrated Brownian motions and Exact L 2-small balls. Ann. of Probab. 2003, 31(3), 1320–1337. http://dx.doi.org/10.1214/aop/1055425782 Zbl1047.60030
- [13] Gao, F., Hannig, J., Lee, T. -Y., Torcaso, F. Exact L 2-small balls of Gaussian processes. Journ. of Theoret. Probab., 2004, 17(2), 503–520. http://dx.doi.org/10.1023/B:JOTP.0000020705.28185.4c Zbl1049.60028
- [14] Jandhyala, V. K., Jiang, P. L. Eigenvalues of a Fredholm integral operator and applications to problems of statistical inference. Journ. Integr. Eq. Appl., 1996, 8(4), 413–427. http://dx.doi.org/10.1216/jiea/1181075971 Zbl0885.45001
- [15] Jandhyala, V. K., MacNeill, I. B. Residual partial sum limit process for regression models with applications to detecting parameter changes at unknown times. Stoch. Proc. Appl., 1989, 33(2), 309–323. http://dx.doi.org/10.1016/0304-4149(89)90045-8 Zbl0679.62056
- [16] Kharinski, P. A., Nikitin, Ya. Yu. Sharp small deviation asymptotics in L 2-norm for a class of Gaussian processes. Journ. Math. Sci., 2006, 133(3), 1328–1332. http://dx.doi.org/10.1007/s10958-006-0042-9
- [17] Li, W. V. Comparison results for the lower tail of Gaussian seminorms. Journ. Theor. Prob., 1992, 5(1), 1–31. http://dx.doi.org/10.1007/BF01046776 Zbl0743.60009
- [18] Li W. V., Shao Q. M. Gaussian processes: inequalities, small ball probabilities and applications. Stochastic Processes: Theory and Methods. Amsterdam: North-Holland, 2001, 533–597. (Handbook Statist., v. 19.) Zbl0987.60053
- [19] Lifshits, M. A. Gaussian Random Functions. Dordrecht: Kluwer, 1995. http://dx.doi.org/10.1007/978-94-015-8474-6
- [20] Lifshits, M. Lectures on Gaussian processes. SpringerBriefs in Mathematics, Springer, 2012. http://dx.doi.org/10.1007/978-3-642-24939-6
- [21] Lifshits, M. A. Bibliography on small deviation probabilities, 2014. Available at http://www.proba.jussieu.fr/pageperso/smalldev/biblio.pdf.
- [22] MacNeill, I. B. Properties of sequences of partial sums of polynomial regression residuals with applications to tests for change of regression at unknown times. Ann. Stat., 1978, 6(2), 422–433. http://dx.doi.org/10.1214/aos/1176344133 Zbl0375.62064
- [23] Nazarov, A. I. On the sharp constant in the small ball asymptotics of some Gaussian processes under L 2-norm. Journ. of Math. Sci., 2003, 117(3), 4185–4210. http://dx.doi.org/10.1023/A:1024868604219
- [24] Nazarov, A. I. Exact L 2-small ball asymptotics of Gaussian processes and the spectrum of boundary-value problems. Journ. of Theor. Prob., 2009, 22(3), 640–665. http://dx.doi.org/10.1007/s10959-008-0173-7 Zbl1187.60025
- [25] Nazarov, A. I. On a set of transformations of Gaussian random functions. Theor. Probab. Appl., 2009, 54(2), 203–216. http://dx.doi.org/10.1137/S0040585X97984103 Zbl1214.60011
- [26] Nazarov, A. I., Nikitin, Ya. Yu. Exact L 2-small ball behavior of integrated Gaussian processes and spectral asymptotics of boundary value problems. Probab. Theor. Relat. Fields, 2004, 129(4), 469–494. http://dx.doi.org/10.1007/s00440-004-0337-z Zbl1051.60041
- [27] Nikitin, Ya. Yu., Pusev, R. S. Exact Small Deviation Asymptotics for Some Brownian Functionals. Theor. Probab. Appl., 2013, 57(1), 60–81. http://dx.doi.org/10.1137/S0040585X97985790 Zbl1278.60072
- [28] Slepian, D. First passage time for a particular Gaussian process. Ann. Math. Stat., 1961, 32(2), 610–612. http://dx.doi.org/10.1214/aoms/1177705068 Zbl0113.12403
- [29] Titchmarsh, E. C. The theory of functions. 2nd ed. London: Oxford University Press, 1939. Zbl0022.14602
- [30] van der Vaart A. W., van Zanten H. Rates of contraction of posterior distributions based on Gaussian process priors. Ann. Statist., 2008, 36(3), 1435–1463. http://dx.doi.org/10.1214/009053607000000613 Zbl1141.60018
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.