Displaying similar documents to “Precise small deviations in L 2 of some Gaussian processes appearing in the regression context”

Karhunen-Loève expansions of α-Wiener bridges

Mátyás Barczy, Endre Iglói (2011)

Open Mathematics

Similarity:

We study Karhunen-Loève expansions of the process(X t(α))t∈[0,T) given by the stochastic differential equation d X t ( α ) = - α T - t X t ( α ) d t + d B t , t [ 0 , T ) , with the initial condition X 0(α) = 0, where α > 0, T ∈ (0, ∞), and (B t)t≥0 is a standard Wiener process. This process is called an α-Wiener bridge or a scaled Brownian bridge, and in the special case of α = 1 the usual Wiener bridge. We present weighted and unweighted Karhunen-Loève expansions of X (α). As applications, we calculate the Laplace transform and the distribution...

Weakly stationary processes with non–positive autocorrelations

Šárka Došlá, Jiří Anděl (2010)

Kybernetika

Similarity:

We deal with real weakly stationary processes { X t , t } with non-positive autocorrelations { r k } , i. e. it is assumed that r k 0 for all k = 1 , 2 , . We show that such processes have some special interesting properties. In particular, it is shown that each such a process can be represented as a linear process. Sufficient conditions under which the resulting process satisfies r k 0 for all k = 1 , 2 , are provided as well.

Superposition of diffusions with linear generator and its multifractal limit process

End Iglói, György Terdik (2003)

ESAIM: Probability and Statistics

Similarity:

In this paper a new multifractal stochastic process called Limit of the Integrated Superposition of Diffusion processes with Linear differencial Generator (LISDLG) is presented which realistically characterizes the network traffic multifractality. Several properties of the LISDLG model are presented including long range dependence, cumulants, logarithm of the characteristic function, dilative stability, spectrum and bispectrum. The model captures higher-order statistics by the cumulants....