Linear bounds for levels of stable rationality
Fedor Bogomolov; Christian Böhning; Hans-Christian Graf von Bothmer
Open Mathematics (2012)
- Volume: 10, Issue: 2, page 466-520
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topFedor Bogomolov, Christian Böhning, and Hans-Christian Graf von Bothmer. "Linear bounds for levels of stable rationality." Open Mathematics 10.2 (2012): 466-520. <http://eudml.org/doc/269127>.
@article{FedorBogomolov2012,
abstract = {Let G be one of the groups SLn(ℂ), Sp2n (ℂ), SOm(ℂ), Om(ℂ), or G 2. For a generically free G-representation V, we say that N is a level of stable rationality for V/G if V/G × ℙN is rational. In this paper we improve known bounds for the levels of stable rationality for the quotients V/G. In particular, their growth as functions of the rank of the group is linear for G being one of the classical groups.},
author = {Fedor Bogomolov, Christian Böhning, Hans-Christian Graf von Bothmer},
journal = {Open Mathematics},
keywords = {Rationality; Stable rationality; Linear group quotients; rationality; stable rationality; linear group quotients},
language = {eng},
number = {2},
pages = {466-520},
title = {Linear bounds for levels of stable rationality},
url = {http://eudml.org/doc/269127},
volume = {10},
year = {2012},
}
TY - JOUR
AU - Fedor Bogomolov
AU - Christian Böhning
AU - Hans-Christian Graf von Bothmer
TI - Linear bounds for levels of stable rationality
JO - Open Mathematics
PY - 2012
VL - 10
IS - 2
SP - 466
EP - 520
AB - Let G be one of the groups SLn(ℂ), Sp2n (ℂ), SOm(ℂ), Om(ℂ), or G 2. For a generically free G-representation V, we say that N is a level of stable rationality for V/G if V/G × ℙN is rational. In this paper we improve known bounds for the levels of stable rationality for the quotients V/G. In particular, their growth as functions of the rank of the group is linear for G being one of the classical groups.
LA - eng
KW - Rationality; Stable rationality; Linear group quotients; rationality; stable rationality; linear group quotients
UR - http://eudml.org/doc/269127
ER -
References
top- [1] Antonyan L.V., Classification of four-vectors of an eight-dimensional space, Trudy Sem. Vektor. Tenzor. Anal., 1981, 20, 144–161 (in Russian) Zbl0467.15018
- [2] Beauville A., Determinantal hypersurfaces, Michigan Math. J., 2000, 48, 39–64 http://dx.doi.org/10.1307/mmj/1030132707 Zbl1076.14534
- [3] Bogomolov F.A., Stable rationality of quotient varieties by simply connected groups, Mat. Sb. (N.S.), 1986, 130(1), 3–17 (in Russian) Zbl0615.14031
- [4] Bogomolov F.A., Rationality of the moduli of hyperelliptic curves of arbitrary genus, In: Conference in Algebraic Geometry, Vancouver, 1984, CMS Conf. Proc., 6, American Mathematical Society, Providence, 1986, 17–37
- [5] Bogomolov F., Böhning Chr., Graf von Bothmer H.-Chr., Rationality of quotients by linear actions of affine groups, Sci. China Math. (in press), DOI: 10.1007/s11425-010-4127-z Zbl1237.14026
- [6] Bogomolov F.A., Katsylo P.I., Rationality of some quotient varieties, Mat. Sb. (N.S.), 1985, 126(4), 584–589 (in Russian) Zbl0591.14040
- [7] Dolgachev I.V., Rationality of fields of invariants, In: Algebraic Geometry, Brunswick, 1985, Proc. Sympos. Pure Math., 46(2), American Mathematical Society, Providence, 1987, 3–16
- [8] Fulton W., Harris J., Representation Theory, Grad. Texts in Math., 129, Springer, New York, 1991 http://dx.doi.org/10.1007/978-1-4612-0979-9
- [9] Gille P., Szamuely T., Central Simple Algebras and Galois Cohomology, Cambridge Stud. Adv. Math., 101, Cambridge University Press, Cambridge, 2006 http://dx.doi.org/10.1017/CBO9780511607219 Zbl1137.12001
- [10] Goodman R., Wallach N.R., Symmetry, Representations, and Invariants, Grad. Texts in Math., 255, Springer, Dordrecht, 2009 http://dx.doi.org/10.1007/978-0-387-79852-3
- [11] Hoffmann N., Moduli stacks of vector bundles on curves and the King-Schofield rationality proof, In: Cohomological and Geometric Approaches to Rationality Problems, Progr. Math., 282, Birkhäuser, Boston, 2010, 133–148 http://dx.doi.org/10.1007/978-0-8176-4934-0_5 Zbl1203.14038
- [12] Katanova A.A., Explicit form of certain multivector invariants, In: Lie Groups, their Discrete Subgroups, and Invariant Theory, Adv. Soviet Math., 8, American Mathematical Society, Providence, 1992, 87–93 Zbl0748.15028
- [13] Katsylo P.I., Rationality of orbit spaces of irreducible representations of the group SL2, Izv. Akad. Nauk SSSR Ser. Mat., 1983, 47(1), 26–36 (in Russian)
- [14] Katsylo P.I., Rationality of the moduli spaces of hyperelliptic curves, Izv. Akad. Nauk SSSR Ser. Mat., 1984, 48(4), 705–710 (in Russian)
- [15] King A., Schofield A., Rationality of moduli of vector bundles on curves, Indag. Math. (N.S.), 1999, 10(4), 519–535 http://dx.doi.org/10.1016/S0019-3577(00)87905-7 Zbl1043.14502
- [16] Miyata T., Invariants of certain groups. I, Nagoya Math. J., 1971, 41, 69–73 Zbl0211.06801
- [17] Perroud M., On the irreducible representations of the Lie algebra chain G 2 ⊃ A 2, J. Mathematical Phys., 1976, 17(11), 1998–2006 http://dx.doi.org/10.1063/1.522839 Zbl0346.17007
- [18] Popov A.M., Irreducible semisimple linear Lie groups with finite stationary subgroups of general position, Funct. Anal. Appl., 1978, 12(2), 154–155 http://dx.doi.org/10.1007/BF01076269 Zbl0404.22018
- [19] Popov V.L., Classification of spinors in dimension fourteen, Trans. Moscow Math. Soc., 1980, 1, 181–232 Zbl0443.20038
- [20] Popov V.L., Vinberg E.B., Invariant Theory, In: Algebraic Geometry IV, Encyclopaedia Math. Sci., 55, Springer, Berlin, 1994
- [21] Saltman D., Lectures on Division Algebras, CBMS Regional Conf. Ser. in Math., 94, American Mathematical Society, Providence, 1999 Zbl0934.16013
- [22] Schwarz G.W., Brion M., Théorie des Invariants et Géométrie des Variétés Quotients, Travaux en Cours, 61, Hermann Éditeurs des Sciences et des Arts, Paris, 2000
- [23] Springer T.A., Veldkamp F.D., Octonions, Jordan Algebras and Exceptional Groups, Springer Monogr. Math., Springer, Berlin, 2000 Zbl1087.17001
- [24] Van den Bergh M., The center of the generic division algebra, J. Algebra, 1989, 127(1), 106–126 http://dx.doi.org/10.1016/0021-8693(89)90277-9
- [25] Vinberg E.B., The Weyl group of a graded Lie algebra, Math. USSR-Izv., 1976, 10(3), 463–495 http://dx.doi.org/10.1070/IM1976v010n03ABEH001711 Zbl0371.20041
- [26] Wallach N., Yacobi O., A multiplicity formula for tensor products of SL2 modules and an explicit Sp2n to Sp2n−2×Sp2 branching formula, In: Symmetry in Mathematics and Physics, Contemp. Math., 490, American Mathematical Society, Providence, 2009, 151–155 http://dx.doi.org/10.1090/conm/490/09592
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.