Linear bounds for levels of stable rationality

Fedor Bogomolov; Christian Böhning; Hans-Christian Graf von Bothmer

Open Mathematics (2012)

  • Volume: 10, Issue: 2, page 466-520
  • ISSN: 2391-5455

Abstract

top
Let G be one of the groups SLn(ℂ), Sp2n (ℂ), SOm(ℂ), Om(ℂ), or G 2. For a generically free G-representation V, we say that N is a level of stable rationality for V/G if V/G × ℙN is rational. In this paper we improve known bounds for the levels of stable rationality for the quotients V/G. In particular, their growth as functions of the rank of the group is linear for G being one of the classical groups.

How to cite

top

Fedor Bogomolov, Christian Böhning, and Hans-Christian Graf von Bothmer. "Linear bounds for levels of stable rationality." Open Mathematics 10.2 (2012): 466-520. <http://eudml.org/doc/269127>.

@article{FedorBogomolov2012,
abstract = {Let G be one of the groups SLn(ℂ), Sp2n (ℂ), SOm(ℂ), Om(ℂ), or G 2. For a generically free G-representation V, we say that N is a level of stable rationality for V/G if V/G × ℙN is rational. In this paper we improve known bounds for the levels of stable rationality for the quotients V/G. In particular, their growth as functions of the rank of the group is linear for G being one of the classical groups.},
author = {Fedor Bogomolov, Christian Böhning, Hans-Christian Graf von Bothmer},
journal = {Open Mathematics},
keywords = {Rationality; Stable rationality; Linear group quotients; rationality; stable rationality; linear group quotients},
language = {eng},
number = {2},
pages = {466-520},
title = {Linear bounds for levels of stable rationality},
url = {http://eudml.org/doc/269127},
volume = {10},
year = {2012},
}

TY - JOUR
AU - Fedor Bogomolov
AU - Christian Böhning
AU - Hans-Christian Graf von Bothmer
TI - Linear bounds for levels of stable rationality
JO - Open Mathematics
PY - 2012
VL - 10
IS - 2
SP - 466
EP - 520
AB - Let G be one of the groups SLn(ℂ), Sp2n (ℂ), SOm(ℂ), Om(ℂ), or G 2. For a generically free G-representation V, we say that N is a level of stable rationality for V/G if V/G × ℙN is rational. In this paper we improve known bounds for the levels of stable rationality for the quotients V/G. In particular, their growth as functions of the rank of the group is linear for G being one of the classical groups.
LA - eng
KW - Rationality; Stable rationality; Linear group quotients; rationality; stable rationality; linear group quotients
UR - http://eudml.org/doc/269127
ER -

References

top
  1. [1] Antonyan L.V., Classification of four-vectors of an eight-dimensional space, Trudy Sem. Vektor. Tenzor. Anal., 1981, 20, 144–161 (in Russian) Zbl0467.15018
  2. [2] Beauville A., Determinantal hypersurfaces, Michigan Math. J., 2000, 48, 39–64 http://dx.doi.org/10.1307/mmj/1030132707 Zbl1076.14534
  3. [3] Bogomolov F.A., Stable rationality of quotient varieties by simply connected groups, Mat. Sb. (N.S.), 1986, 130(1), 3–17 (in Russian) Zbl0615.14031
  4. [4] Bogomolov F.A., Rationality of the moduli of hyperelliptic curves of arbitrary genus, In: Conference in Algebraic Geometry, Vancouver, 1984, CMS Conf. Proc., 6, American Mathematical Society, Providence, 1986, 17–37 
  5. [5] Bogomolov F., Böhning Chr., Graf von Bothmer H.-Chr., Rationality of quotients by linear actions of affine groups, Sci. China Math. (in press), DOI: 10.1007/s11425-010-4127-z Zbl1237.14026
  6. [6] Bogomolov F.A., Katsylo P.I., Rationality of some quotient varieties, Mat. Sb. (N.S.), 1985, 126(4), 584–589 (in Russian) Zbl0591.14040
  7. [7] Dolgachev I.V., Rationality of fields of invariants, In: Algebraic Geometry, Brunswick, 1985, Proc. Sympos. Pure Math., 46(2), American Mathematical Society, Providence, 1987, 3–16 
  8. [8] Fulton W., Harris J., Representation Theory, Grad. Texts in Math., 129, Springer, New York, 1991 http://dx.doi.org/10.1007/978-1-4612-0979-9 
  9. [9] Gille P., Szamuely T., Central Simple Algebras and Galois Cohomology, Cambridge Stud. Adv. Math., 101, Cambridge University Press, Cambridge, 2006 http://dx.doi.org/10.1017/CBO9780511607219 Zbl1137.12001
  10. [10] Goodman R., Wallach N.R., Symmetry, Representations, and Invariants, Grad. Texts in Math., 255, Springer, Dordrecht, 2009 http://dx.doi.org/10.1007/978-0-387-79852-3 
  11. [11] Hoffmann N., Moduli stacks of vector bundles on curves and the King-Schofield rationality proof, In: Cohomological and Geometric Approaches to Rationality Problems, Progr. Math., 282, Birkhäuser, Boston, 2010, 133–148 http://dx.doi.org/10.1007/978-0-8176-4934-0_5 Zbl1203.14038
  12. [12] Katanova A.A., Explicit form of certain multivector invariants, In: Lie Groups, their Discrete Subgroups, and Invariant Theory, Adv. Soviet Math., 8, American Mathematical Society, Providence, 1992, 87–93 Zbl0748.15028
  13. [13] Katsylo P.I., Rationality of orbit spaces of irreducible representations of the group SL2, Izv. Akad. Nauk SSSR Ser. Mat., 1983, 47(1), 26–36 (in Russian) 
  14. [14] Katsylo P.I., Rationality of the moduli spaces of hyperelliptic curves, Izv. Akad. Nauk SSSR Ser. Mat., 1984, 48(4), 705–710 (in Russian) 
  15. [15] King A., Schofield A., Rationality of moduli of vector bundles on curves, Indag. Math. (N.S.), 1999, 10(4), 519–535 http://dx.doi.org/10.1016/S0019-3577(00)87905-7 Zbl1043.14502
  16. [16] Miyata T., Invariants of certain groups. I, Nagoya Math. J., 1971, 41, 69–73 Zbl0211.06801
  17. [17] Perroud M., On the irreducible representations of the Lie algebra chain G 2 ⊃ A 2, J. Mathematical Phys., 1976, 17(11), 1998–2006 http://dx.doi.org/10.1063/1.522839 Zbl0346.17007
  18. [18] Popov A.M., Irreducible semisimple linear Lie groups with finite stationary subgroups of general position, Funct. Anal. Appl., 1978, 12(2), 154–155 http://dx.doi.org/10.1007/BF01076269 Zbl0404.22018
  19. [19] Popov V.L., Classification of spinors in dimension fourteen, Trans. Moscow Math. Soc., 1980, 1, 181–232 Zbl0443.20038
  20. [20] Popov V.L., Vinberg E.B., Invariant Theory, In: Algebraic Geometry IV, Encyclopaedia Math. Sci., 55, Springer, Berlin, 1994 
  21. [21] Saltman D., Lectures on Division Algebras, CBMS Regional Conf. Ser. in Math., 94, American Mathematical Society, Providence, 1999 Zbl0934.16013
  22. [22] Schwarz G.W., Brion M., Théorie des Invariants et Géométrie des Variétés Quotients, Travaux en Cours, 61, Hermann Éditeurs des Sciences et des Arts, Paris, 2000 
  23. [23] Springer T.A., Veldkamp F.D., Octonions, Jordan Algebras and Exceptional Groups, Springer Monogr. Math., Springer, Berlin, 2000 Zbl1087.17001
  24. [24] Van den Bergh M., The center of the generic division algebra, J. Algebra, 1989, 127(1), 106–126 http://dx.doi.org/10.1016/0021-8693(89)90277-9 
  25. [25] Vinberg E.B., The Weyl group of a graded Lie algebra, Math. USSR-Izv., 1976, 10(3), 463–495 http://dx.doi.org/10.1070/IM1976v010n03ABEH001711 Zbl0371.20041
  26. [26] Wallach N., Yacobi O., A multiplicity formula for tensor products of SL2 modules and an explicit Sp2n to Sp2n−2×Sp2 branching formula, In: Symmetry in Mathematics and Physics, Contemp. Math., 490, American Mathematical Society, Providence, 2009, 151–155 http://dx.doi.org/10.1090/conm/490/09592 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.