Points of continuity and quasicontinuity
Open Mathematics (2010)
- Volume: 8, Issue: 1, page 179-190
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] Borsík J., On the points of bilateral quasicontinuity of functions, Real Anal. Exchange, 1993/94, 19, 529–536 Zbl0807.26002
- [2] Borsík J., Points of continuity, quasicontinuity, cliquishness and upper and lower quasicontinuity, Real Anal. Exchange, 2007/2008, 33, 339–350 Zbl1162.54003
- [3] Borsík J., Sums of quasicontinuous functions defined on pseudometrizable spaces, Real Anal. Exchange, 1996/97, 22, 328–337 Zbl0879.54014
- [4] Ewert J., Lipski T., Lower and upper quasicontinuous functions, Demonstratio Math., 1983, 16, 85–93 Zbl0526.54005
- [5] Lipinski J.S., Šalát T., On the points of quasicontinuity and cliquishness of functions, Czechoslovak Math. J., 1971, 21, 484–489 Zbl0219.26004
- [6] Neubrunn T., Quasi-continuity, Real Anal. Exchange, 1988/89, 14, 259–306
- [7] Neubrunnová A., On quasicontinuous and cliquishfunctions, Časopis Pěst. Mat., 1974, 99, 109–114 Zbl0292.26005
- [8] Stronska E., Maximal families for the class of upper and lower semi-quasicontinuous functions, Real Anal. Exchange, 2001/2002, 27, 599–608 Zbl1068.26009