Infinite injective transformations whose centralizers have simple structure

Janusz Konieczny

Open Mathematics (2011)

  • Volume: 9, Issue: 1, page 23-35
  • ISSN: 2391-5455

Abstract

top
For an infinite set X, denote by Γ(X) the semigroup of all injective mappings from X to X under function composition. For α ∈ Γ(X), let C(α) = β ∈ g/g(X): αβ = βα be the centralizer of α in Γ(X). The aim of this paper is to determine those elements of Γ(X) whose centralizers have simple structure. We find α ∈ (X) such that various Green’s relations in C(α) coincide, characterize α ∈ Γ(X) such that the 𝒥 -classes of C(α) form a chain, and describe Green’s relations in C(α) for α with so-called finite ray-cycle decomposition. If α is a permutation, we also find the structure of C(α) in terms of direct and wreath products of familiar semigroups.

How to cite

top

Janusz Konieczny. "Infinite injective transformations whose centralizers have simple structure." Open Mathematics 9.1 (2011): 23-35. <http://eudml.org/doc/269142>.

@article{JanuszKonieczny2011,
abstract = {For an infinite set X, denote by Γ(X) the semigroup of all injective mappings from X to X under function composition. For α ∈ Γ(X), let C(α) = β ∈ g/g(X): αβ = βα be the centralizer of α in Γ(X). The aim of this paper is to determine those elements of Γ(X) whose centralizers have simple structure. We find α ∈ (X) such that various Green’s relations in C(α) coincide, characterize α ∈ Γ(X) such that the \[ \mathcal \{J\} \] -classes of C(α) form a chain, and describe Green’s relations in C(α) for α with so-called finite ray-cycle decomposition. If α is a permutation, we also find the structure of C(α) in terms of direct and wreath products of familiar semigroups.},
author = {Janusz Konieczny},
journal = {Open Mathematics},
keywords = {Infinite injective transformations; Centralizers; Green's relations; infinite injective transformations; semigroups of transformations; centralizers; Green relations; partial orders},
language = {eng},
number = {1},
pages = {23-35},
title = {Infinite injective transformations whose centralizers have simple structure},
url = {http://eudml.org/doc/269142},
volume = {9},
year = {2011},
}

TY - JOUR
AU - Janusz Konieczny
TI - Infinite injective transformations whose centralizers have simple structure
JO - Open Mathematics
PY - 2011
VL - 9
IS - 1
SP - 23
EP - 35
AB - For an infinite set X, denote by Γ(X) the semigroup of all injective mappings from X to X under function composition. For α ∈ Γ(X), let C(α) = β ∈ g/g(X): αβ = βα be the centralizer of α in Γ(X). The aim of this paper is to determine those elements of Γ(X) whose centralizers have simple structure. We find α ∈ (X) such that various Green’s relations in C(α) coincide, characterize α ∈ Γ(X) such that the \[ \mathcal {J} \] -classes of C(α) form a chain, and describe Green’s relations in C(α) for α with so-called finite ray-cycle decomposition. If α is a permutation, we also find the structure of C(α) in terms of direct and wreath products of familiar semigroups.
LA - eng
KW - Infinite injective transformations; Centralizers; Green's relations; infinite injective transformations; semigroups of transformations; centralizers; Green relations; partial orders
UR - http://eudml.org/doc/269142
ER -

References

top
  1. [1] Araújo J., Kinyon M., Konieczny J., Minimal paths in the commuting graphs of semigroups, European J. Combin., 2011, 32(1), 178–197 http://dx.doi.org/10.1016/j.ejc.2010.09.004 Zbl1227.05161
  2. [2] Araújo J., Konieczny J., Automorphism groups of centralizers of idempotents, J. Algebra, 2003, 269(1), 227–239 http://dx.doi.org/10.1016/S0021-8693(03)00499-X Zbl1037.20062
  3. [3] Araújo J., Konieczny J., Semigroups of transformations preserving an equivalence relation and a cross-section, Comm. Algebra, 2004, 32(5), 1917–1935 http://dx.doi.org/10.1081/AGB-120029913 Zbl1068.20061
  4. [4] Araújo J., Konieczny J., General theorems on automorphisms of semigroups and their applications, J. Aust. Math. Soc., 2009, 87(1), 1–17 http://dx.doi.org/10.1017/S1446788709000019 Zbl1194.20059
  5. [5] Araújo J., Konieczny J., The largest subsemilattices of the semigroup of transformations on a finite set, preprint available at http://arxiv.org/abs/1007.4845 
  6. [6] Bates C., Bundy D., Perkins S., Rowley P., Commuting involution graphs for symmetric groups, J. Algebra, 2003, 266(1), 133–153 http://dx.doi.org/10.1016/S0021-8693(03)00302-8 Zbl1034.20003
  7. [7] Dixon J.D., Mortimer B., Permutation Groups, Grad. Texts in Math., 163, Springer, New York, 1996 
  8. [8] Dummit D.S., Foote R.M., Abstract Algebra, 3rd ed., John Wiley & Sons, Hoboken, 2004 
  9. [9] Higgins P.M., Digraphs and the semigroup of all functions on a finite set, Glasg. Math. J., 1988, 30(1), 41–57 http://dx.doi.org/10.1017/S0017089500007011 Zbl0634.20034
  10. [10] Howie J.M., Fundamentals of Semigroup Theory, London Math. Soc. Monogr. (N.S.), Oxford University Press, New York, 1995 Zbl0835.20077
  11. [11] Hyman J., Automorphisms of 1-unary algebras, Algebra Universalis, 1974, 4(1), 61–77 http://dx.doi.org/10.1007/BF02485708 Zbl0322.08002
  12. [12] Hyman J., Nation J.B., Automorphisms of 1-unary algebras. II, Algebra Universalis, 1974, 4(1), 127–131 http://dx.doi.org/10.1007/BF02485714 Zbl0322.08003
  13. [13] Iranmanesh A., Jafarzadeh A., On the commuting graph associated with the symmetric and alternating groups, J. Algebra Appl., 2008, 7(1), 129–146 http://dx.doi.org/10.1142/S0219498808002710 Zbl1151.20013
  14. [14] Jacobson N., Basic Algebra. I, 2nd ed., W.H. Freeman and Co., New York, 1985 
  15. [15] Jakubíková D., Systems of unary algebras with common endomorphisms. I, II, Czechoslovak Math. J., 1979, 29(104)(3), 406–420, 421–429 Zbl0401.08010
  16. [16] Konieczny J., Green's relations and regularity in centralizers of permutations, Glasg. Math. J., 1999, 41(1), 45–57 http://dx.doi.org/10.1017/S0017089599970301 Zbl0924.20049
  17. [17] Konieczny J., Semigroups of transformations commuting with idempotents, Algebra Colloq., 2002, 9(2), 121–134 Zbl1005.20046
  18. [18] Konieczny J., Semigroups of transformations commuting with injective nilpotents, Comm. Algebra, 2004, 32(4), 1551–1569 http://dx.doi.org/10.1081/AGB-120028798 Zbl1068.20065
  19. [19] Konieczny J., Centralizers in the semigroup of injective transformations on an infinite set, Bull. Aust. Math. Soc., 2010, 82(2), 305–321 http://dx.doi.org/10.1017/S0004972710000304 Zbl1205.20063
  20. [20] Konieczny J., Lipscomb S., Centralizers in the semigroup of partial transformations, Math. Japon., 1998, 48(3), 367–376 Zbl0917.20051
  21. [21] Levi I., Normal semigroups of one-to-one transformations, Proc. Edinburgh Math. Soc., 1991, 34(1), 65–76 http://dx.doi.org/10.1017/S0013091500005009 Zbl0701.20040
  22. [22] Lipscomb S.L., The structure of the centralizer of a permutation, Semigroup Forum, 1988, 37(3), 301–312 http://dx.doi.org/10.1007/BF02573142 Zbl0641.20041
  23. [23] Lipscomb S., Konieczny J., Centralizers of permutations in the partial transformation semigroup, Pure Math. Appl., 1995, 6(4), 349–354 Zbl0856.20044
  24. [24] Liskovec V.A., Feĭnberg V.Z., On the permutability of mappings, Dokl. Akad. Nauk BSSR, 1963, 7, 366–369 (in Russian) 
  25. [25] Novotný M., Sur an problème de la théorie des applications, Publ. Fac. Sci. Univ. Massaryk, 1953, 344, 53–64 (in Czech) 
  26. [26] Novotný M., Über Abbildungen von Mengen, Pacific J. Math., 1963, 13(4), 1359–1369 Zbl0137.25304
  27. [27] Pei H., Regularity and Green's relations for semigroups of transformations that preserve an equivalence, Comm. Algebra, 2005, 33(1), 109–118 http://dx.doi.org/10.1081/AGB-200040921 Zbl1072.20082
  28. [28] Pei H., Deng W., A note on Green's relations in the semigroups T(X, ρ), Semigroup Forum, 2009, 79(1), 210–213 http://dx.doi.org/10.1007/s00233-009-9151-3 Zbl1172.20046
  29. [29] Suzuki M., Group Theory I, Grundlehren Math. Wiss., 247, Springer, Berlin-New York, 1982 
  30. [30] Szechtman F., On the automorphism group of the centralizer of an idempotent in the full transformation monoid, Semigroup Forum, 2005, 70(2), 238–242 http://dx.doi.org/10.1007/s00233-004-0141-1 Zbl1080.20057
  31. [31] Weaver M.W., On the commutativity of a correspondence and a permutation, Pacific J. Math., 1960, 10(2), 705–711 Zbl0094.03203

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.