Some monounary algebras with EKP
Mathematica Bohemica (2020)
- Volume: 145, Issue: 4, page 401-414
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topHalušková, Emília. "Some monounary algebras with EKP." Mathematica Bohemica 145.4 (2020): 401-414. <http://eudml.org/doc/297055>.
@article{Halušková2020,
abstract = {An algebra $\mathcal \{A\}$ is said to have the endomorphism kernel property (EKP) if every congruence on $\mathcal \{A\}$ is the kernel of some endomorphism of $\mathcal \{A\}$. Three classes of monounary algebras are dealt with. For these classes, all monounary algebras with EKP are described.},
author = {Halušková, Emília},
journal = {Mathematica Bohemica},
keywords = {monounary algebra; endomorphism; congruence; kernel},
language = {eng},
number = {4},
pages = {401-414},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Some monounary algebras with EKP},
url = {http://eudml.org/doc/297055},
volume = {145},
year = {2020},
}
TY - JOUR
AU - Halušková, Emília
TI - Some monounary algebras with EKP
JO - Mathematica Bohemica
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 145
IS - 4
SP - 401
EP - 414
AB - An algebra $\mathcal {A}$ is said to have the endomorphism kernel property (EKP) if every congruence on $\mathcal {A}$ is the kernel of some endomorphism of $\mathcal {A}$. Three classes of monounary algebras are dealt with. For these classes, all monounary algebras with EKP are described.
LA - eng
KW - monounary algebra; endomorphism; congruence; kernel
UR - http://eudml.org/doc/297055
ER -
References
top- Araújo, J., Konieczny, J., 10.1007/s00233-012-9424-0, Semigroup Forum 86 (2013), 1-31. (2013) Zbl1267.20090MR3016258DOI10.1007/s00233-012-9424-0
- Blyth, T. S., Fang, J., Silva, H. J., 10.1081/agb-120037216, Commun. Algebra 32 (2004), 2225-2242. (2004) Zbl1060.06018MR2100466DOI10.1081/agb-120037216
- Blyth, T. S., Fang, J., Wang, L.-B., The strong endomorphism kernel property in distributive double -algebras, Sci. Math. Jpn. 76 (2013), 227-234. (2013) Zbl1320.06009MR3330070
- Blyth, T. S., Silva, H. J., 10.1080/00927870801937240, Commun. Algebra 36 (2008), 1682-1694. (2008) Zbl1148.06005MR2424259DOI10.1080/00927870801937240
- Černegová, M., Jakubíková-Studenovská, D., 10.1080/00927872.2016.1276927, Commun. Algebra 45 (2017), 4656-4666. (2017) Zbl06812755MR3670337DOI10.1080/00927872.2016.1276927
- Fang, G., Fang, J., The strong endomorphism kernel property in distributive -algebras, Southeast Asian Bull. Math. 37 (2013), 491-497. (2013) Zbl1299.06017MR3134913
- Fang, J., Sun, Z.-J., 10.1007/s00012-013-0254-z, Algebra Univers. 70 (2013), 393-401. (2013) Zbl1305.06004MR3127981DOI10.1007/s00012-013-0254-z
- Gaitán, H., Cortés, Y. J., The endomorphism kernel property in finite Stone algebras, JP J. Algebra Number Theory Appl. 14 (2009), 51-64. (2009) Zbl1191.06007MR2548439
- Guričan, J., The endomorphism kernel property for modular -algebras and Stone lattices of order , JP J. Algebra Number Theory Appl. 25 (2012), 69-90. (2012) Zbl1258.06002MR2976467
- Guričan, J., A note on the endomorphism kernel property, JP J. Algebra Number Theory Appl. 33 (2014), 133-139. (2014) Zbl1302.08004
- Guričan, J., Strong endomorphism kernel property for Brouwerian algebras, JP J. Algebra Number Theory Appl. 36 (2015), 241-258. (2015) Zbl1333.06025
- Guričan, J., Ploščica, M., 10.1007/s00012-016-0370-7, Algebra Univers. 75 (2016), 243-255. (2016) Zbl1348.06008MR3515400DOI10.1007/s00012-016-0370-7
- Halušková, E., 10.21136/mb.2017.0056-16, Math. Bohem. 143 (2018), 161-171. (2018) Zbl06890412MR3831484DOI10.21136/mb.2017.0056-16
- Jakubíková-Studenovská, D., Pócs, J., 10.1007/s10587-008-0028-5, Czech. Math. J. 58 (2008), 469-479. (2008) Zbl1174.08303MR2411102DOI10.1007/s10587-008-0028-5
- Jakubíková-Studenovská, D., Pócs, J., Monounary Algebras, Pavol Josef Šafárik University, Košice (2009). (2009) Zbl1181.08001
- Jakubíková-Studenovská, D., Potpinková, K., 10.2478/s12175-014-0233-7, Math. Slovaca 64 (2014), 675-690. (2014) Zbl1332.08003MR3227764DOI10.2478/s12175-014-0233-7
- Jakubíková-Studenovská, D., Šuličová, M., 10.1142/s1793557115500072, Asian-Eur. J. Math. 8 (2015), Article No. 1550007, 12 pages. (2015) Zbl1315.08003MR3322550DOI10.1142/s1793557115500072
- Jakubíková-Studenovská, D., Šuličová, M., 10.1515/dema-2015-0038, Demonstr. Math. 48 (2015), 536-545. (2015) Zbl1343.08001MR3430887DOI10.1515/dema-2015-0038
- Jónsson, B., 10.1007/bfb0058648, Lecture Notes in Mathematics 250. Springer, Berlin (1972). (1972) Zbl0225.08001MR0345895DOI10.1007/bfb0058648
- Konieczny, J., 10.1017/s0017089599970301, Glasg. Math. J. 41 (1999), 45-57. (1999) Zbl0924.20049MR1689659DOI10.1017/s0017089599970301
- Konieczny, J., 10.1023/a:1013729316147, Czech. Math. J. 51 (2001), 873-888. (2001) Zbl1003.20053MR1864048DOI10.1023/a:1013729316147
- Konieczny, J., 10.1017/s0004972710000304, Bull. Aust. Math. Soc. 82 (2010), 305-321. (2010) Zbl1205.20063MR2685154DOI10.1017/s0004972710000304
- Konieczny, J., 10.2478/s11533-010-0086-4, Cent. Eur. J. Math. 9 (2011), 23-35. (2011) Zbl1214.20057MR2753879DOI10.2478/s11533-010-0086-4
- Novotný, M., Kopeček, O., Chvalina, J., 10.5817/cz.muni.m210-5831-2012, Masaryk University, Brno (2012). (2012) DOI10.5817/cz.muni.m210-5831-2012
- Pitkethly, J., Davey, B., 10.1007/0-387-27570-3, Advances in Mathematics 9. Springer, New York (2005). (2005) Zbl1085.08001MR2161626DOI10.1007/0-387-27570-3
- Popov, B. V., Kovaleva, O. V., 10.1007/s00233-006-0635-0, Semigroup Forum 73 (2006), 444-456. (2006) Zbl1115.08005MR2279911DOI10.1007/s00233-006-0635-0
- Pozdnyakova, I. V., 10.1007/s10958-013-1278-9, Mat. Metody Fiz.-Mekh. Polya 55 Russian (2012), 29-38 translated in J. Math. Sci. 190 658-668. (2012) Zbl1274.08023MR3012027DOI10.1007/s10958-013-1278-9
Citations in EuDML Documents
top- Heghine Ghumashyan, Jaroslav Guričan, Endomorphism kernel property for finite groups
- Danica Jakubíková-Studenovská, Reinhard Pöschel, Sándor Radelecki, The minimal closed monoids for the Galois connection -
- Jaroslav Guričan, Heghine Ghumashyan, Strong endomorphism kernel property for finite Brouwerian semilattices and relative Stone algebras
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.