Some monounary algebras with EKP

Emília Halušková

Mathematica Bohemica (2020)

  • Volume: 145, Issue: 4, page 401-414
  • ISSN: 0862-7959

Abstract

top
An algebra 𝒜 is said to have the endomorphism kernel property (EKP) if every congruence on 𝒜 is the kernel of some endomorphism of 𝒜 . Three classes of monounary algebras are dealt with. For these classes, all monounary algebras with EKP are described.

How to cite

top

Halušková, Emília. "Some monounary algebras with EKP." Mathematica Bohemica 145.4 (2020): 401-414. <http://eudml.org/doc/297055>.

@article{Halušková2020,
abstract = {An algebra $\mathcal \{A\}$ is said to have the endomorphism kernel property (EKP) if every congruence on $\mathcal \{A\}$ is the kernel of some endomorphism of $\mathcal \{A\}$. Three classes of monounary algebras are dealt with. For these classes, all monounary algebras with EKP are described.},
author = {Halušková, Emília},
journal = {Mathematica Bohemica},
keywords = {monounary algebra; endomorphism; congruence; kernel},
language = {eng},
number = {4},
pages = {401-414},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Some monounary algebras with EKP},
url = {http://eudml.org/doc/297055},
volume = {145},
year = {2020},
}

TY - JOUR
AU - Halušková, Emília
TI - Some monounary algebras with EKP
JO - Mathematica Bohemica
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 145
IS - 4
SP - 401
EP - 414
AB - An algebra $\mathcal {A}$ is said to have the endomorphism kernel property (EKP) if every congruence on $\mathcal {A}$ is the kernel of some endomorphism of $\mathcal {A}$. Three classes of monounary algebras are dealt with. For these classes, all monounary algebras with EKP are described.
LA - eng
KW - monounary algebra; endomorphism; congruence; kernel
UR - http://eudml.org/doc/297055
ER -

References

top
  1. Araújo, J., Konieczny, J., 10.1007/s00233-012-9424-0, Semigroup Forum 86 (2013), 1-31. (2013) Zbl1267.20090MR3016258DOI10.1007/s00233-012-9424-0
  2. Blyth, T. S., Fang, J., Silva, H. J., 10.1081/agb-120037216, Commun. Algebra 32 (2004), 2225-2242. (2004) Zbl1060.06018MR2100466DOI10.1081/agb-120037216
  3. Blyth, T. S., Fang, J., Wang, L.-B., The strong endomorphism kernel property in distributive double p -algebras, Sci. Math. Jpn. 76 (2013), 227-234. (2013) Zbl1320.06009MR3330070
  4. Blyth, T. S., Silva, H. J., 10.1080/00927870801937240, Commun. Algebra 36 (2008), 1682-1694. (2008) Zbl1148.06005MR2424259DOI10.1080/00927870801937240
  5. Černegová, M., Jakubíková-Studenovská, D., 10.1080/00927872.2016.1276927, Commun. Algebra 45 (2017), 4656-4666. (2017) Zbl06812755MR3670337DOI10.1080/00927872.2016.1276927
  6. Fang, G., Fang, J., The strong endomorphism kernel property in distributive p -algebras, Southeast Asian Bull. Math. 37 (2013), 491-497. (2013) Zbl1299.06017MR3134913
  7. Fang, J., Sun, Z.-J., 10.1007/s00012-013-0254-z, Algebra Univers. 70 (2013), 393-401. (2013) Zbl1305.06004MR3127981DOI10.1007/s00012-013-0254-z
  8. Gaitán, H., Cortés, Y. J., The endomorphism kernel property in finite Stone algebras, JP J. Algebra Number Theory Appl. 14 (2009), 51-64. (2009) Zbl1191.06007MR2548439
  9. Guričan, J., The endomorphism kernel property for modular p -algebras and Stone lattices of order n , JP J. Algebra Number Theory Appl. 25 (2012), 69-90. (2012) Zbl1258.06002MR2976467
  10. Guričan, J., A note on the endomorphism kernel property, JP J. Algebra Number Theory Appl. 33 (2014), 133-139. (2014) Zbl1302.08004
  11. Guričan, J., Strong endomorphism kernel property for Brouwerian algebras, JP J. Algebra Number Theory Appl. 36 (2015), 241-258. (2015) Zbl1333.06025
  12. Guričan, J., Ploščica, M., 10.1007/s00012-016-0370-7, Algebra Univers. 75 (2016), 243-255. (2016) Zbl1348.06008MR3515400DOI10.1007/s00012-016-0370-7
  13. Halušková, E., 10.21136/mb.2017.0056-16, Math. Bohem. 143 (2018), 161-171. (2018) Zbl06890412MR3831484DOI10.21136/mb.2017.0056-16
  14. Jakubíková-Studenovská, D., Pócs, J., 10.1007/s10587-008-0028-5, Czech. Math. J. 58 (2008), 469-479. (2008) Zbl1174.08303MR2411102DOI10.1007/s10587-008-0028-5
  15. Jakubíková-Studenovská, D., Pócs, J., Monounary Algebras, Pavol Josef Šafárik University, Košice (2009). (2009) Zbl1181.08001
  16. Jakubíková-Studenovská, D., Potpinková, K., 10.2478/s12175-014-0233-7, Math. Slovaca 64 (2014), 675-690. (2014) Zbl1332.08003MR3227764DOI10.2478/s12175-014-0233-7
  17. Jakubíková-Studenovská, D., Šuličová, M., 10.1142/s1793557115500072, Asian-Eur. J. Math. 8 (2015), Article No. 1550007, 12 pages. (2015) Zbl1315.08003MR3322550DOI10.1142/s1793557115500072
  18. Jakubíková-Studenovská, D., Šuličová, M., 10.1515/dema-2015-0038, Demonstr. Math. 48 (2015), 536-545. (2015) Zbl1343.08001MR3430887DOI10.1515/dema-2015-0038
  19. Jónsson, B., 10.1007/bfb0058648, Lecture Notes in Mathematics 250. Springer, Berlin (1972). (1972) Zbl0225.08001MR0345895DOI10.1007/bfb0058648
  20. Konieczny, J., 10.1017/s0017089599970301, Glasg. Math. J. 41 (1999), 45-57. (1999) Zbl0924.20049MR1689659DOI10.1017/s0017089599970301
  21. Konieczny, J., 10.1023/a:1013729316147, Czech. Math. J. 51 (2001), 873-888. (2001) Zbl1003.20053MR1864048DOI10.1023/a:1013729316147
  22. Konieczny, J., 10.1017/s0004972710000304, Bull. Aust. Math. Soc. 82 (2010), 305-321. (2010) Zbl1205.20063MR2685154DOI10.1017/s0004972710000304
  23. Konieczny, J., 10.2478/s11533-010-0086-4, Cent. Eur. J. Math. 9 (2011), 23-35. (2011) Zbl1214.20057MR2753879DOI10.2478/s11533-010-0086-4
  24. Novotný, M., Kopeček, O., Chvalina, J., 10.5817/cz.muni.m210-5831-2012, Masaryk University, Brno (2012). (2012) DOI10.5817/cz.muni.m210-5831-2012
  25. Pitkethly, J., Davey, B., 10.1007/0-387-27570-3, Advances in Mathematics 9. Springer, New York (2005). (2005) Zbl1085.08001MR2161626DOI10.1007/0-387-27570-3
  26. Popov, B. V., Kovaleva, O. V., 10.1007/s00233-006-0635-0, Semigroup Forum 73 (2006), 444-456. (2006) Zbl1115.08005MR2279911DOI10.1007/s00233-006-0635-0
  27. Pozdnyakova, I. V., 10.1007/s10958-013-1278-9, Mat. Metody Fiz.-Mekh. Polya 55 Russian (2012), 29-38 translated in J. Math. Sci. 190 658-668. (2012) Zbl1274.08023MR3012027DOI10.1007/s10958-013-1278-9

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.