Dirac and Plateau billiards in domains with corners

Misha Gromov

Open Mathematics (2014)

  • Volume: 12, Issue: 8, page 1109-1156
  • ISSN: 2391-5455

Abstract

top
Groping our way toward a theory of singular spaces with positive scalar curvatures we look at the Dirac operator and a generalized Plateau problem in Riemannian manifolds with corners. Using these, we prove that the set of C 2-smooth Riemannian metrics g on a smooth manifold X, such that scalg(x) ≥ κ(x), is closed under C 0-limits of Riemannian metrics for all continuous functions κ on X. Apart from that our progress is limited but we formulate many conjectures. All along, we emphasize geometry, rather than topology of manifolds with their scalar curvatures bounded from below.

How to cite

top

Misha Gromov. "Dirac and Plateau billiards in domains with corners." Open Mathematics 12.8 (2014): 1109-1156. <http://eudml.org/doc/269152>.

@article{MishaGromov2014,
abstract = {Groping our way toward a theory of singular spaces with positive scalar curvatures we look at the Dirac operator and a generalized Plateau problem in Riemannian manifolds with corners. Using these, we prove that the set of C 2-smooth Riemannian metrics g on a smooth manifold X, such that scalg(x) ≥ κ(x), is closed under C 0-limits of Riemannian metrics for all continuous functions κ on X. Apart from that our progress is limited but we formulate many conjectures. All along, we emphasize geometry, rather than topology of manifolds with their scalar curvatures bounded from below.},
author = {Misha Gromov},
journal = {Open Mathematics},
keywords = {Scalar curvature; Dirac operator; Plateau problem; Reflection groups; scalar curvature; domains with corners; Dirac; billiards; dihedrally extremal; Plateau-hedron; dihedrally rigid; Plateau traps; Reifenberg flatness; Plateau m-web},
language = {eng},
number = {8},
pages = {1109-1156},
title = {Dirac and Plateau billiards in domains with corners},
url = {http://eudml.org/doc/269152},
volume = {12},
year = {2014},
}

TY - JOUR
AU - Misha Gromov
TI - Dirac and Plateau billiards in domains with corners
JO - Open Mathematics
PY - 2014
VL - 12
IS - 8
SP - 1109
EP - 1156
AB - Groping our way toward a theory of singular spaces with positive scalar curvatures we look at the Dirac operator and a generalized Plateau problem in Riemannian manifolds with corners. Using these, we prove that the set of C 2-smooth Riemannian metrics g on a smooth manifold X, such that scalg(x) ≥ κ(x), is closed under C 0-limits of Riemannian metrics for all continuous functions κ on X. Apart from that our progress is limited but we formulate many conjectures. All along, we emphasize geometry, rather than topology of manifolds with their scalar curvatures bounded from below.
LA - eng
KW - Scalar curvature; Dirac operator; Plateau problem; Reflection groups; scalar curvature; domains with corners; Dirac; billiards; dihedrally extremal; Plateau-hedron; dihedrally rigid; Plateau traps; Reifenberg flatness; Plateau m-web
UR - http://eudml.org/doc/269152
ER -

References

top
  1. [1] Allard W.K., On the first variation of a varifold, Ann. Math., 1972, 95(3), 417–491 http://dx.doi.org/10.2307/1970868 Zbl0252.49028
  2. [2] de Almeida S., Minimal hypersurfaces of a positive scalar curvature manifold, Math. Z., 1985, 190(1), 73–82 http://dx.doi.org/10.1007/BF01159165 Zbl0549.53059
  3. [3] Almgren F.J. Jr., Existence and regularity almost everywhere of solutions to elliptic variational problems among surfaces of varying topological type and singularity structure, Ann. Math., 1968, 87(2), 321–391 http://dx.doi.org/10.2307/1970587 Zbl0162.24703
  4. [4] Almgren F., Optimal isoperimetric inequalities, Indiana Univ. Math. J., 1986, 35(3), 451–547 http://dx.doi.org/10.1512/iumj.1986.35.35028 Zbl0585.49030
  5. [5] Bernig A., Scalar curvature of definable CAT-spaces, Adv. Geom., 2013, 3(1), 23–43 Zbl1028.53031
  6. [6] Brakke K.A., Minimal surfaces, corners, and wires, J. Geom. Anal., 1992, 2(1), 11–36 http://dx.doi.org/10.1007/BF02921333 Zbl0725.53013
  7. [7] Brendle S., Marques F.C., Neves A., Deformations of the hemisphere that increase scalar curvature, preprint avaliable at http://arxiv-web3.library.cornell.edu/abs/1004.3088v3 Zbl1227.53048
  8. [8] Burago Yu.D., Toponogov V.A., On three-dimensional Riemannian spaces with curvature bounded above, Math. Notes, 1973, 13(6), 526–530 http://dx.doi.org/10.1007/BF01163962 Zbl0277.53025
  9. [9] Cheeger J., Colding T.H., On the structure of spaces with Ricci curvature bounded below. I, J. Differential Geom., 1997, 46(3), 406–480 Zbl0902.53034
  10. [10] Davaux H., An optimal inequality between scalar curvature and spectrum of the Laplacian, Math. Ann., 2003, 327(2), 271–292 http://dx.doi.org/10.1007/s00208-003-0451-8 Zbl1038.58035
  11. [11] Eichmair M., Miao P., Wang X., Extension of a theorem of Shi and Tam, preprint available at http://arxiv.org/abs/0911.0377 Zbl1238.53025
  12. [12] Goette S., Semmelmann U., Spinc structures and scalar curvature estimates, Ann. Global Anal. Geom., 2001, 20(4), 301–324 http://dx.doi.org/10.1023/A:1013035721335 Zbl1002.53023
  13. [13] Goette S., Semmelmann U., Scalar curvature estimates for compact symmetric spaces, Differential Geom. Appl., 2002, 16(1), 65–78 http://dx.doi.org/10.1016/S0926-2245(01)00068-7 Zbl1043.53030
  14. [14] Grant J.D.E., Tassotti N., A positive mass theorem for low-regularity metrics, preprint available at http://arxiv.org/abs/1205.1302 
  15. [15] Gromov M., Filling Riemannian manifolds, J. Differential Geom., 1983, 18(1), 1–147 Zbl0515.53037
  16. [16] Gromov M., Sign and geometric meaning of curvature, Rend. Sem. Mat. Fis. Milano, 1991, 61, 9–123 http://dx.doi.org/10.1007/BF02925201 Zbl0820.53035
  17. [17] Gromov M., Foliated Plateau problem, Part I: minimal varieties, Geom. Funct. Anal., 1991, 1(1), 14–79 http://dx.doi.org/10.1007/BF01895417 Zbl0768.53011
  18. [18] Gromov M., Metric invariants of Kähler manifolds, In: Differential Geometry and Topology, World Scientific, River Edge, 1993, 90–116 Zbl0888.53047
  19. [19] Gromov M., Positive curvature, macroscopic dimension, spectral gaps and higher signatures, In: Functional Analysis on the Eve of the 21st Century, II, Progr. Math., 132, Birkhäuser, Boston, 1996, 1–213 
  20. [20] Gromov M., Singularities, expanders and topology of maps. Part 2: from combinatorics to topology via algebraic isoperimetry, Geom. Func. Anal., 2010, 20(2), 416–526 http://dx.doi.org/10.1007/s00039-010-0073-8 Zbl1251.05039
  21. [21] Gromov M., Hilbert volume in metric spaces. Part 1, Cent. Eur. J. Math., 2012, 10(2), 371–400 http://dx.doi.org/10.2478/s11533-011-0143-7 
  22. [22] Gromov M., Plateau-Stein manifolds, Cent. Eur. J. Math., 2014, 12(7), 923–951 http://dx.doi.org/10.2478/s11533-013-0387-5 Zbl1293.31006
  23. [23] Gromov M., Lawson H.B. Jr., Spin and scalar curvature in the presence of a fundamental group. I, Ann. Math., 1980, 111(3), 209–230 http://dx.doi.org/10.2307/1971198 Zbl0445.53025
  24. [24] Gromov M., Lawson H.B. Jr., The classification of simply connected manifolds of positive scalar curvature, Ann. Math., 1980, 111(3), 423–434 http://dx.doi.org/10.2307/1971103 Zbl0463.53025
  25. [25] Gromov M., Lawson H.B. Jr., Positive scalar curvature and the Dirac operator on complete Riemannian manifolds, Inst. Hautes Études Sci. Publ. Math., 1983, 58, 83–196 http://dx.doi.org/10.1007/BF02953774 Zbl0538.53047
  26. [26] Grüter M., Optimal regularity for codimension one minimal surfaces with a free boundary, Manuscripta Math., 1987, 58(3), 295–343 http://dx.doi.org/10.1007/BF01165891 Zbl0609.35012
  27. [27] Grüter M., Jost J., Allard type regularity results for varifolds with free boundaries, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 1986, 13(1), 129–169 Zbl0615.49018
  28. [28] Kazdan J.L., Warner F.W., Prescribing curvatures, In: Differential Geometry, 2, Proc. Symp. in Pure Math., 27, American Mathematical Society, Providence, 1975, 309–319 Zbl0313.53017
  29. [29] Kinderlehrer D., Nirenberg L., Regularity in free boundary problems, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 1977, 4(2), 373–391 Zbl0352.35023
  30. [30] La Nave G., Macroscopic dimension and fundamental group of manifolds with positive isotropic curvature, preprint available at http://arxiv.org/abs/1303.5096 
  31. [31] Lee D.A., A positive mass theorem for Lipschitz metrics with small singular sets, preprint available at http://arxiv.org/abs/1110.6485 
  32. [32] Listing M., Scalar curvature on compact symmetric spaces, preprint available at http://arxiv.org/abs/1007.1832 
  33. [33] Listing M., Scalar curvature and vector bundles, preprint available at http://arxiv.org/abs/1202.4325 
  34. [34] Llarull M., Scalar curvature estimates for (n + 4k)-dimensional manifolds, Differential Geom. Appl., 1996, 6(4), 321–326 http://dx.doi.org/10.1016/S0926-2245(96)00025-3 
  35. [35] Lohkamp J., Positive scalar curvature in dim C 8, C. R. Math. Acad. Sci. Paris, 2006, 343(9), 585–588 http://dx.doi.org/10.1016/j.crma.2006.09.013 Zbl1118.53041
  36. [36] Lusztig G., Cohomology of classifying spaces and hermitian representations, Represent. Theory, 1997, 1, 31–36 http://dx.doi.org/10.1090/S1088-4165-97-00004-6 Zbl0897.55013
  37. [37] McFeron D., Székelyhidi G., On the positive mass theorem for manifolds with corners, preprint available at http://arxiv.org/abs/1104.2258 Zbl1253.53032
  38. [38] Miao P., Positive mass theorem on manifolds admitting corners along a hypersurface, Adv. Theor. Math. Phys., 2002, 6(6), 1163–1182 
  39. [39] Micallef M., Moore J.D., Minimal two-spheres and the topology of manifolds with positive curvature on totally isotropic two-planes, Ann. Math., 1988, 127(1), 199–227 http://dx.doi.org/10.2307/1971420 Zbl0661.53027
  40. [40] Min-Oo M., Scalar curvature rigidity of asymptotically hyperbolic spin manifolds, Math. Ann., 1989, 285(4), 527–539 http://dx.doi.org/10.1007/BF01452046 Zbl0686.53038
  41. [41] Min-Oo M., Dirac Operator in Geometry and Physics, Global Riemannian Geometry: Curvature and Topology, Adv. Courses Math. CRM Barcelona, Birkhäuser, Basel, 2003, 55–87 http://dx.doi.org/10.1007/978-3-0348-8055-8_2 
  42. [42] Petrunin A.M., An upper bound for the curvature integral, St. Petersburg Math. J., 2009, 20(2), 255–265 http://dx.doi.org/10.1090/S1061-0022-09-01046-2 
  43. [43] Reifenberg E.R., Solution of the Plateau problem for m-dimensional surfaces of varying topological type, Acta Math., 1962, 104(1–2), 1–92 Zbl0099.08503
  44. [44] Schoen R., Yau S.-T., Existence of incompressible minimal surfaces and the topology of three-dimensional manifolds with nonnegative scalar curvature, Ann. Math., 1979, 110(1), 127–142 http://dx.doi.org/10.2307/1971247 Zbl0431.53051
  45. [45] Schoen R., Yau S.T., On the structure of manifolds with positive scalar curvature, Manuscripta Math., 1979, 28(1–3), 159–183 http://dx.doi.org/10.1007/BF01647970 Zbl0423.53032
  46. [46] Simon L., Regularity of capillary surfaces over domains with corners, Pacific J. Math., 1980, 88(2), 363–377 http://dx.doi.org/10.2140/pjm.1980.88.363 Zbl0467.35022
  47. [47] Smale N., Generic regularity of homologically area minimizing hypersurfaces in eight-dimensional manifolds, Commun. Anal. Geom., 1993, 1(2), 217–228 Zbl0843.58027
  48. [48] Sormani C., Wenger S., The intrinsic flat distance between Riemannian manifolds and integral current spaces, J. Differential Geom., 2011, 87(1), 117–199 Zbl1229.53053
  49. [49] Wenger S., A short proof of Gromov’s filling inequality, Proc. Amer. Math. Soc., 2008, 136(8), 2937–2941 http://dx.doi.org/10.1090/S0002-9939-08-09203-4 Zbl1148.53031

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.