An additivity formula for the strict global dimension of C(Ω)
Open Mathematics (2014)
- Volume: 12, Issue: 3, page 470-475
 - ISSN: 2391-5455
 
Access Full Article
topAbstract
topHow to cite
topSeytek Tabaldyev. "An additivity formula for the strict global dimension of C(Ω)." Open Mathematics 12.3 (2014): 470-475. <http://eudml.org/doc/269153>.
@article{SeytekTabaldyev2014,
	abstract = {Let A be a unital strict Banach algebra, and let K + be the one-point compactification of a discrete topological space K. Denote by the weak tensor product of the algebra A and C(K +), the algebra of continuous functions on K +. We prove that if K has sufficiently large cardinality (depending on A), then the strict global dimension is equal to .},
	author = {Seytek Tabaldyev},
	journal = {Open Mathematics},
	keywords = {Strict Banach algebra; Strict projective module; Strict global homological dimension; strict Banach algebra; strict projective module; strict global homological dimension},
	language = {eng},
	number = {3},
	pages = {470-475},
	title = {An additivity formula for the strict global dimension of C(Ω)},
	url = {http://eudml.org/doc/269153},
	volume = {12},
	year = {2014},
}
TY  - JOUR
AU  - Seytek Tabaldyev
TI  - An additivity formula for the strict global dimension of C(Ω)
JO  - Open Mathematics
PY  - 2014
VL  - 12
IS  - 3
SP  - 470
EP  - 475
AB  - Let A be a unital strict Banach algebra, and let K + be the one-point compactification of a discrete topological space K. Denote by the weak tensor product of the algebra A and C(K +), the algebra of continuous functions on K +. We prove that if K has sufficiently large cardinality (depending on A), then the strict global dimension is equal to .
LA  - eng
KW  - Strict Banach algebra; Strict projective module; Strict global homological dimension; strict Banach algebra; strict projective module; strict global homological dimension
UR  - http://eudml.org/doc/269153
ER  - 
References
top- [1] Grothendieck A., Produits Tensoriels Topologiques et Espaces Nucléaires, Mem. Amer. Math. Soc., 16, American Mathematical Society, Providence, 1955
 - [2] Helemskii A.Ya., The Homology of Banach and Topological Algebras, Math. Appl. (Soviet Ser.), 41, Kluwer, Dordrecht, 1989 http://dx.doi.org/10.1007/978-94-009-2354-6[Crossref]
 - [3] Khelemskiĭ; A.Ya., Smallest values assumed by the global homological dimension of Banach function algebras, Amer. Math. Soc. Transl., 1984, 124, 75–96
 - [4] Krichevets A.N., On homological dimension of C(Ω), VINITI preprint #9012-B86, 1986 (in Russian)
 - [5] Kurmakaeva E.Sh., Homological Properties of Algebras of Continuous Functions, PhD thesis, Moscow State University, 1991 (in Russian)
 - [6] Kurmakaeva E.Sh., Dependence of strict homological dimension of C(Ω) on the topology of Ω, Math. Notes, 1994, 55(3–4), 289–293 http://dx.doi.org/10.1007/BF02110783[Crossref]
 - [7] MacLane S., Homology, Grundlehren Math. Wiss., 114, Springer, Berlin, 1963
 - [8] Phillips R.S., On linear transformations, Trans. Amer. Math. Soc., 1940, 48(3), 516–541 http://dx.doi.org/10.1090/S0002-9947-1940-0004094-3[Crossref] Zbl0025.34202
 - [9] Selivanov Yu.V., The values assumed by the global dimension in certain classes of Banach algebras, Moscow Univ. Math. Bull., 1975, 30(1), 30–34 Zbl0307.46037
 - [10] Selivanov Yu.V., Homological dimensions of tensor products of Banach algebras, In: Banach Algebras’ 97, Blaubeuren, July 20–August 3, 1997, Walter de Gruyter, Berlin, 1998, 441–459 Zbl0915.46065
 - [11] Tabaldyev S.B., On strict homological dimensions of algebras of continuous functions, Math. Notes, 2006, 80(5–6), 715–725 http://dx.doi.org/10.1007/s11006-006-0192-6[Crossref] Zbl1130.46046
 - [12] Varopoulos N.Th., Some remarks on Q-algebras, Ann. Inst. Fourier (Grenoble), 1972, 22(4), 1–11 http://dx.doi.org/10.5802/aif.432[Crossref]
 
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.