# Decomposability criterion for linear sheaves

Open Mathematics (2012)

- Volume: 10, Issue: 4, page 1292-1299
- ISSN: 2391-5455

## Access Full Article

top## Abstract

top## How to cite

topMarcos Jardim, and Vitor Silva. "Decomposability criterion for linear sheaves." Open Mathematics 10.4 (2012): 1292-1299. <http://eudml.org/doc/269156>.

@article{MarcosJardim2012,

abstract = {We establish a decomposability criterion for linear sheaves on ℙn. Applying it to instanton bundles, we show, in particular, that every rank 2n instanton bundle of charge 1 on ℙn is decomposable. Moreover, we provide an example of an indecomposable instanton bundle of rank 2n − 1 and charge 1, thus showing that our criterion is sharp.},

author = {Marcos Jardim, Vitor Silva},

journal = {Open Mathematics},

keywords = {Linear sheaves; Instanton bundles; Representations of quivers; instanton bundles; quiver representations; decomposability criterions for sheaves; linear sheaves},

language = {eng},

number = {4},

pages = {1292-1299},

title = {Decomposability criterion for linear sheaves},

url = {http://eudml.org/doc/269156},

volume = {10},

year = {2012},

}

TY - JOUR

AU - Marcos Jardim

AU - Vitor Silva

TI - Decomposability criterion for linear sheaves

JO - Open Mathematics

PY - 2012

VL - 10

IS - 4

SP - 1292

EP - 1299

AB - We establish a decomposability criterion for linear sheaves on ℙn. Applying it to instanton bundles, we show, in particular, that every rank 2n instanton bundle of charge 1 on ℙn is decomposable. Moreover, we provide an example of an indecomposable instanton bundle of rank 2n − 1 and charge 1, thus showing that our criterion is sharp.

LA - eng

KW - Linear sheaves; Instanton bundles; Representations of quivers; instanton bundles; quiver representations; decomposability criterions for sheaves; linear sheaves

UR - http://eudml.org/doc/269156

ER -

## References

top- [1] Fløystad G., Monads on projective spaces, Comm. Algebra, 2000, 28(12), 5503–5516 http://dx.doi.org/10.1080/00927870008827171 Zbl0977.14007
- [2] Horrocks G., Vector bundles on the punctured spectrum of a local ring, Proc. London Math. Soc., 1964, 14, 689–713 http://dx.doi.org/10.1112/plms/s3-14.4.689 Zbl0126.16801
- [3] Jardim M., Instanton sheaves on complex projective spaces, Collect. Math., 2006, 57(1), 69–91 Zbl1095.14040
- [4] Jardim M., Miró-Roig R.M., On the semistability of instanton sheaves over certain projective varieties, Comm. Algebra, 2008, 36(1), 288–298 http://dx.doi.org/10.1080/00927870701665503 Zbl1131.14046
- [5] Kac V.G., Infinite root systems, representations of graphs and invariant theory, Invent. Math., 1980, 56(1), 57–92 http://dx.doi.org/10.1007/BF01403155 Zbl0427.17001
- [6] Okonek Chr., Schneider M., Spindler H., Vector Bundles on Complex Projective Spaces, Progr. Math., 3, Birkhäuser, Boston, 1980 http://dx.doi.org/10.1007/978-3-0348-0151-5 Zbl0438.32016

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.