Free CR distributions
Open Mathematics (2012)
- Volume: 10, Issue: 5, page 1896-1913
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] Armstrong S., Free 3-distributions: holonomy, Fefferman constructions and dual distributions, preprint available at http://arxiv.org/abs/0708.3027
- [2] Čap A., Correspondence spaces and twistor spaces for parabolic geometries, J. Reine Angew. Math., 2005, 582, 143–172 Zbl1075.53022
- [3] Čap A., Slovák J., Parabolic Geometries I, Math. Surveys Monogr., 154, American Mathematical Society, Providence, 2009 Zbl1183.53002
- [4] Doubrov B., Slovák J., Inclusions between parabolic geometries, Pure Appl. Math. Q., 2010, 6(3), Special Issue: In Honor of Joseph J.Kohn, Part 1, 755–780 Zbl1208.53047
- [5] Ežov V.V., Schmalz G., Poincaré automorphisms for nondegenerate CR quadrics, Math. Ann., 1994, 298(1), 79–87 http://dx.doi.org/10.1007/BF01459726 Zbl0847.32015
- [6] Schmalz G., Slovák J., The geometry of hyperbolic and elliptic CR-manifolds of codimension two, Asian J. Math., 2000, 4(3), 565–598 Zbl0972.32025
- [7] Schmalz G., Slovák J., Addendum to ”The geometry of hyperbolic and elliptic CR-manifolds of codimension two”, Asian J. Math., 4, 565–598, 2000, Asian J. Math., 2003, 7(3), 303–306 Zbl0972.32025
- [8] Šilhan J., A real analog of Kostant’s version of the Bott-Borel-Weil theorem, J. Lie Theory, 2004, 14(2), 481–499 Zbl1090.17010
- [9] Tanaka N., On the equivalence problem associated with simple graded Lie algebras, Hokkaido Math. J., 1979, 8(1), 23–84
- [10] Yamaguchi K., Differential systems associated with simple graded Lie algebras, In: Progress in Differential Geometry, Adv. Stud. Pure Math., 22, Mathematical Society of Japan, Tokyo, 1993, 413–494 Zbl0812.17018