Some global results for nonlinear fourth order eigenvalue problems

Ziyatkhan Aliyev

Open Mathematics (2014)

  • Volume: 12, Issue: 12, page 1811-1828
  • ISSN: 2391-5455

Abstract

top
In this paper, we consider the nonlinear fourth order eigenvalue problem. We show the existence of family of unbounded continua of nontrivial solutions bifurcating from the line of trivial solutions. These global continua have properties similar to those found in Rabinowitz and Berestycki well-known global bifurcation theorems.

How to cite

top

Ziyatkhan Aliyev. "Some global results for nonlinear fourth order eigenvalue problems." Open Mathematics 12.12 (2014): 1811-1828. <http://eudml.org/doc/269165>.

@article{ZiyatkhanAliyev2014,
abstract = {In this paper, we consider the nonlinear fourth order eigenvalue problem. We show the existence of family of unbounded continua of nontrivial solutions bifurcating from the line of trivial solutions. These global continua have properties similar to those found in Rabinowitz and Berestycki well-known global bifurcation theorems.},
author = {Ziyatkhan Aliyev},
journal = {Open Mathematics},
keywords = {Fourth order eigenvalue problem; Spectral parameter in the boundary condition; Bifurcation point; Global continua; Nodal properties of solutions; fourth order eigenvalue problem; spectral parameter in the boundary condition; bifurcation point; global continua; nodal properties of solutions},
language = {eng},
number = {12},
pages = {1811-1828},
title = {Some global results for nonlinear fourth order eigenvalue problems},
url = {http://eudml.org/doc/269165},
volume = {12},
year = {2014},
}

TY - JOUR
AU - Ziyatkhan Aliyev
TI - Some global results for nonlinear fourth order eigenvalue problems
JO - Open Mathematics
PY - 2014
VL - 12
IS - 12
SP - 1811
EP - 1828
AB - In this paper, we consider the nonlinear fourth order eigenvalue problem. We show the existence of family of unbounded continua of nontrivial solutions bifurcating from the line of trivial solutions. These global continua have properties similar to those found in Rabinowitz and Berestycki well-known global bifurcation theorems.
LA - eng
KW - Fourth order eigenvalue problem; Spectral parameter in the boundary condition; Bifurcation point; Global continua; Nodal properties of solutions; fourth order eigenvalue problem; spectral parameter in the boundary condition; bifurcation point; global continua; nodal properties of solutions
UR - http://eudml.org/doc/269165
ER -

References

top
  1. [1] Aliev Z.S., Basis properties in L p of systems of root functions of a spectral problem with spectral parameter in a boundary condition, Differential Equations, 2011, 47(6), 766–777 http://dx.doi.org/10.1134/S0012266111060024 Zbl1235.34222
  2. [2] Allakhverdiev T.I., The study of some linear and nonlinear Sturm-Liouville problem with spectral parameter in boundary conditions, Dissertation, Baku, 1991 (in Russian) 
  3. [3] Ben Amara J., Vladimirov A.A., On oscillation of eigenfunctions of a fourth-order problem with spectral parameter in boundary condition, J. Math. Sciences, 2008, 150(5), 2317–2325 http://dx.doi.org/10.1007/s10958-008-0131-z Zbl1151.34338
  4. [4] Banks D.O., Kurowski G.J., A Prüfer transformation for the equation of the vibrating beam, Trans. Amer. Math. Soc., 1974, 199, 203–222 Zbl0291.34024
  5. [5] Banks D.O., Kurowski G.J., A Prüfer transformation for the equation of a vibrating beam subject to axial forces, J. Differential Equations, 1977, 24, 57–74 http://dx.doi.org/10.1016/0022-0396(77)90170-X Zbl0313.73051
  6. [6] Berestycki H., On some nonlinear Sturm-Liouville problems, J. Differential Equations, 1977, 26, 375–390 http://dx.doi.org/10.1016/0022-0396(77)90086-9 
  7. [7] Binding P.A., Browne P.J., Watson B.A., Spectral problem for nonlinear Sturm-Liouville equations with eigenparameter dependent boundary conditions, Canad. J. Math., 2000, 52, 248–264 http://dx.doi.org/10.4153/CJM-2000-011-1 Zbl0952.34018
  8. [8] Chiappinelli R., On eigenvalues and bifurcation for nonlinear Sturm-Liouville operators, Boll. Un. Math. Ital., 1985, 4-A, 77–83 Zbl0565.34016
  9. [9] Chu J., O’Regan D., Positive solutions for regular and singular fourth-order boundary value problems, Comm. Appl. Anal., 2006, 10, 185–199 
  10. [10] Courant R., Zur Theorie der linear Integralgleichungen, Mathematishe Annalen, 1923, 89(1–2), 161–178 Zbl49.0274.01
  11. [11] Courant R., Hilbert D., Methods of mathematical phusics, I, Interscience, New York, 1953 Zbl0051.28802
  12. [12] Crandall M.G., Rabinowitz P.H., Nonlinear Sturm-Liouville eigenvalue problems and topological degree, J. Math. Mech., 1970, 19, 1083–1102 Zbl0206.09705
  13. [13] Dancer E.N., On the structure of solutions of nonlinear eigenvalue problems, Indiana Univ. Math. J., 1974, 23, 1069–1076 http://dx.doi.org/10.1512/iumj.1974.23.23087 Zbl0276.47051
  14. [14] Janczewsky S.N., Oscillation theorems for the differential boundary value problems of the fourth order, Annals of Mathematics, 1928, 29(1–4), 521–542 Zbl54.0476.02
  15. [15] Kerimov N.B., Aliyev Z.S., On oscillation properties of the eigenfunctions of a fourth-order differential operator, Trans. Natl. Acad. Sci. Azerb. Ser. Phys.-Techn. Math. Sci., 2005, 25(4), 63–76 
  16. [16] Kerimov N.B., Aliyev Z.S., On the basis property of the system of eigenfunctions of a spectral problem with spectral parameter in the boundary condition, Differential Equations, 2007, 43(7), 905–915 http://dx.doi.org/10.1134/S0012266107070038 Zbl1189.34161
  17. [17] Kranoselskii M.A., On a topologial method in the problem of eigenfunctions of nonlinear operators, Dokl.Akad. Nauk SSSR, 1950, 74, 5–7 (in Russian) 
  18. [18] Lazer A.C., McKenna P.J., Global bifurcation and a theorem of Tarantella, J. Math. Anal. Appl., 1994, 181, 648–655 http://dx.doi.org/10.1006/jmaa.1994.1049 Zbl0797.34021
  19. [19] Leighton W., Nehari Z., On the oscillation of solutions of self-adjoint linear differential equations of the fourth order, Tras. Amer. Math. Soc., 1958, 98, 325–377 http://dx.doi.org/10.1090/S0002-9947-1958-0102639-X Zbl0084.08104
  20. [20] Li Y., Positive solutions of fourth-order boundary value problems with two parameters, J. Math. Anal. Appl., 2003, 281, 477–484 http://dx.doi.org/10.1016/S0022-247X(03)00131-8 Zbl1030.34016
  21. [21] Ma R., Xu J., Bifurcation from interval and positive solutions of nonlinear fourth-order boundary value problem, Nonlinear Anal., 2010, 72, 113–122 http://dx.doi.org/10.1016/j.na.2009.06.061 Zbl1200.34023
  22. [22] Ma R., Nodal solutions of boundary value problems of fourth-order ordinary differential equations, J. Math. Anal. Appl., 2006, 319, 424–434 http://dx.doi.org/10.1016/j.jmaa.2005.06.045 Zbl1098.34012
  23. [23] Ma R., Tompson B., Nodal solutions for a nonlinear fourth-order eigenvalue problem, Acta Math. Sinica Eng. Ser., 2008, 24, 27–34 http://dx.doi.org/10.1007/s10114-007-1009-6 Zbl1149.34312
  24. [24] Makhmudov A.P., Aliev Z.S., Global bifurcation of solutions of certain non-linearizable eigenvalue problems, Differential Equations, 1989, 25, 71–76 Zbl0684.35014
  25. [25] Makhmudov A.P., Aliev Z.S., Some global results for linearizable and nonli-nearizable Sturm-Liouville problems of fourth order, Soviet Math. Dokl., 1990, 40, 472–476 
  26. [26] Makhmudov A.P., Aliev Z.S., Nondifferentiable perburbations of spectral problems for a pair of selfadjoint operators and global bifurgation, Soviet Math., 1990, 34(1), 51–60 
  27. [27] Rabinowitz P.H., Some global results for nonlinear eigenvalue problems, J. Funct. Anal., 1971, 7, 487–513 http://dx.doi.org/10.1016/0022-1236(71)90030-9 
  28. [28] Rynne B.P., Bifurcation from zero or infinity in Sturm-Liouville problems which are not linearizable, J. Math. Anal. Appl., 1998, 228(1), 141–156 http://dx.doi.org/10.1006/jmaa.1998.6122 Zbl0918.34028
  29. [29] Rynne B.P., Infinitely many solutions of superlinear fourth-order boundary value problems, Topological Meth. in Nonlinear Anal. Journal of the Juliusz Schauder Center, 2002, 19, 303–312 Zbl1017.34015
  30. [30] Rynne B.P., Global bifurcation for 2mth-order boundary value problems and infinitely many solutions superlinear problems, J. Differential Equations, 2003, 188(2), 461–472 http://dx.doi.org/10.1016/S0022-0396(02)00146-8 Zbl1029.34015
  31. [31] Schmitt K., Smith H.L., On eigenvalue problems for nondifferentiable mappings, J. Differential Equations, 1979, 33, 294–319 http://dx.doi.org/10.1016/0022-0396(79)90067-6 
  32. [32] Walter J., Regular eigenvalue problems with eigenvalue parameter in the boundary conditions, Mathematische Zeitschrift, 1973, 133(4), 301–312 http://dx.doi.org/10.1007/BF01177870 Zbl0246.47058
  33. [33] Webb J.R.L., Infante G., Franco D., Positive solutions of nonlinear fourth-order boundary value problems with local and nonlocal boundary conditions, Proc. Roy. Soc. Edinburgh Sect. A, 2008, 138, 427–446 http://dx.doi.org/10.1017/S0308210506001041 Zbl1167.34004
  34. [34] Weyl H., Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Diferentialgleichungen, Mathematishe Annalen, 1912, 71(4), 441–479 http://dx.doi.org/10.1007/BF01456804 Zbl43.0436.01
  35. [35] Yao Q., Positive solutions for eigenvalue problems of fourth-order elastic beam equations, Appl. Math. Lett., 2004, 17, 237–243 http://dx.doi.org/10.1016/S0893-9659(04)90037-7 Zbl1072.34022

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.