Page 1 Next

Displaying 1 – 20 of 29

Showing per page

A priori estimates and solvability of a non-resonant generalized multi-point boundary value problem of mixed Dirichlet-Neumann-Dirichlet type involving a p -Laplacian type operator

Chaitan P. Gupta (2007)

Applications of Mathematics

This paper is devoted to the problem of existence of a solution for a non-resonant, non-linear generalized multi-point boundary value problem on the interval [ 0 , 1 ] . The existence of a solution is obtained using topological degree and some a priori estimates for functions satisfying the boundary conditions specified in the problem.

Boundary value problems for nonlinear perturbations of some ϕ-Laplacians

J. Mawhin (2007)

Banach Center Publications

This paper surveys a number of recent results obtained by C. Bereanu and the author in existence results for second order differential equations of the form (ϕ(u'))' = f(t,u,u') submitted to various boundary conditions. In the equation, ϕ: ℝ → ≤ ]-a,a[ is a homeomorphism such that ϕ(0) = 0. An important motivation is the case of the curvature operator, where ϕ(s) = s/√(1+s²). The problems are reduced to fixed point problems in suitable function space, to which Leray-Schauder...

Existence of Periodic Solutions for Nonlinear Neutral Dynamic Equations with Functional Delay on a Time Scale

Abdelouaheb Ardjouni, Ahcène Djoudi (2013)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Let 𝕋 be a periodic time scale. The purpose of this paper is to use a modification of Krasnoselskii’s fixed point theorem due to Burton to prove the existence of periodic solutions on time scale of the nonlinear dynamic equation with variable delay x t = - a t h x σ t + c ( t ) x ˜ t - r t + G t , x t , x t - r t , t 𝕋 , where f is the -derivative on 𝕋 and f ˜ is the -derivative on ( i d - r ) ( 𝕋 ) . We invert the given equation to obtain an equivalent integral equation from which we define a fixed point mapping written as a sum of a large contraction and a compact map. We show...

New spectral criteria for almost periodic solutions of evolution equations

Toshiki Naito, Nguyen Van Minh, Jong Son Shin (2001)

Studia Mathematica

We present a general spectral decomposition technique for bounded solutions to inhomogeneous linear periodic evolution equations of the form ẋ = A(t)x + f(t) (*), with f having precompact range, which is then applied to find new spectral criteria for the existence of almost periodic solutions with specific spectral properties in the resonant case where e i s p ( f ) ¯ may intersect the spectrum of the monodromy operator P of (*) (here sp(f) denotes the Carleman spectrum of f). We show that if (*) has a bounded...

Nonlinear systems with mean curvature-like operators

Pierluigi Benevieri, João Marcos do Ó, Everaldo Souto de Medeiros (2007)

Banach Center Publications

We give an existence result for a periodic boundary value problem involving mean curvature-like operators. Following a recent work of R. Manásevich and J. Mawhin, we use an approach based on the Leray-Schauder degree.

Singular Dirichlet boundary value problems. II: Resonance case

Donal O'Regan (1998)

Czechoslovak Mathematical Journal

Existence results are established for the resonant problem y ' ' + λ m a y = f ( t , y ) a.e. on [ 0 , 1 ] with y satisfying Dirichlet boundary conditions. The problem is singular since f is a Carathéodory function, a L l o c 1 ( 0 , 1 ) with a > 0 a.e. on [ 0 , 1 ] and 0 1 x ( 1 - x ) a ( x ) d x < .

Currently displaying 1 – 20 of 29

Page 1 Next