Global attractivity, oscillation and Hopf bifurcation for a class of diffusive hematopoiesis models

Xiao Wang; Zhixiang Li

Open Mathematics (2007)

  • Volume: 5, Issue: 2, page 397-414
  • ISSN: 2391-5455

Abstract

top
In this paper, we discuss the special diffusive hematopoiesis model P ( t , x ) t = Δ P ( t , x ) - γ P ( t , x ) + β P ( t - τ , x ) 1 + P n ( t - τ , x ) with Neumann boundary condition. Sufficient conditions are provided for the global attractivity and oscillation of the equilibrium for Eq. (*), by using a new theorem we stated and proved. When P(t, χ) does not depend on a spatial variable χ ∈ Ω, these results are also true and extend or complement existing results. Finally, existence and stability of the Hopf bifurcation for Eq. (*) are studied.

How to cite

top

Xiao Wang, and Zhixiang Li. "Global attractivity, oscillation and Hopf bifurcation for a class of diffusive hematopoiesis models." Open Mathematics 5.2 (2007): 397-414. <http://eudml.org/doc/269168>.

@article{XiaoWang2007,
abstract = {In this paper, we discuss the special diffusive hematopoiesis model \[\frac\{\{\partial P(t,x)\}\}\{\{\partial t\}\} = \Delta P(t,x) - \gamma P(t,x) + \frac\{\{\beta P(t - \tau ,x)\}\}\{\{1 + P^n (t - \tau ,x)\}\}\] with Neumann boundary condition. Sufficient conditions are provided for the global attractivity and oscillation of the equilibrium for Eq. (*), by using a new theorem we stated and proved. When P(t, χ) does not depend on a spatial variable χ ∈ Ω, these results are also true and extend or complement existing results. Finally, existence and stability of the Hopf bifurcation for Eq. (*) are studied.},
author = {Xiao Wang, Zhixiang Li},
journal = {Open Mathematics},
keywords = {Global attractivity; Oscillation; Hopf bifurcation; delay differential equation; Neumann boundary condition; lower-upper solution pairs},
language = {eng},
number = {2},
pages = {397-414},
title = {Global attractivity, oscillation and Hopf bifurcation for a class of diffusive hematopoiesis models},
url = {http://eudml.org/doc/269168},
volume = {5},
year = {2007},
}

TY - JOUR
AU - Xiao Wang
AU - Zhixiang Li
TI - Global attractivity, oscillation and Hopf bifurcation for a class of diffusive hematopoiesis models
JO - Open Mathematics
PY - 2007
VL - 5
IS - 2
SP - 397
EP - 414
AB - In this paper, we discuss the special diffusive hematopoiesis model \[\frac{{\partial P(t,x)}}{{\partial t}} = \Delta P(t,x) - \gamma P(t,x) + \frac{{\beta P(t - \tau ,x)}}{{1 + P^n (t - \tau ,x)}}\] with Neumann boundary condition. Sufficient conditions are provided for the global attractivity and oscillation of the equilibrium for Eq. (*), by using a new theorem we stated and proved. When P(t, χ) does not depend on a spatial variable χ ∈ Ω, these results are also true and extend or complement existing results. Finally, existence and stability of the Hopf bifurcation for Eq. (*) are studied.
LA - eng
KW - Global attractivity; Oscillation; Hopf bifurcation; delay differential equation; Neumann boundary condition; lower-upper solution pairs
UR - http://eudml.org/doc/269168
ER -

References

top
  1. [1] J. Chern and S. Huang: “Global stability in delay equation models of haematopoiesis”, Proc. Natl. Counc. Roc (A), 24(4), (2000), pp. 293–300. 
  2. [2] K. Cooke, P. van den Driessche and Xingfu Zou: “Interaction of maturation delay and nonlinear birth in population and epidemic models”, J. Math. Biol., Vol. 39, (1999), pp. 332–352. http://dx.doi.org/10.1007/s002850050194 Zbl0945.92016
  3. [3] T. Ding: “Asymptotic behavior of solution of some retarded differential equations”, Scientia Sinica (A), 25(4), (1982), pp. 363–370. Zbl0498.34056
  4. [4] K. Gopalsamy, N. Bantsur and S. Trofimchuk: “A note on global attractivity in models of hematopoiesis”, Ukrainian Math. J., Vol. 50, (1998), pp. 3–12. http://dx.doi.org/10.1007/BF02514684 Zbl0893.92012
  5. [5] K. Gopalsamy: Stability and oscillations in delay differential equations of population dynamics, Kluwer Academic Press, Boston, 1992. Zbl0752.34039
  6. [6] K. Gopalsamy, M.R.S. Kulenovic and G. Ladas: “Oscillation and global attractivity in models of hematopoiesis”, J. Dyn. Diff. Eqns, Vol. 2, (1990), pp. 117–132. http://dx.doi.org/10.1007/BF01057415 Zbl0694.34057
  7. [7] K. Gopalsamy and P. Weng: “Global attractivity and level crossing in model of Hematopoiesis”, Bulletin of the Institute of Mathematics, Academia Sinica, Vol. 22, (1994), pp. 341–360. Zbl0829.34067
  8. [8] J. Hale and N. Sternberg: “On set of chaos in differential delay equations”, J. Comput. Phys., Vol. 77, (1988), pp. 221–239. http://dx.doi.org/10.1016/0021-9991(88)90164-7 
  9. [9] J.K. Hale and S.M. Verduyn Lunel: Introduction to Function Differential Equations, Springer-verlag, 1993. 
  10. [10] B.D. Hassard, N.D. Kazarinoff and Y.H. Wan: Theory and Appliation of Hopf bifurcation, Cambridge University Press, London, 1981. Zbl0474.34002
  11. [11] D. Henry: Geometrictheoryofsemilinearparabolicequations, Lecture Notes in Math., Vol. 840, Springer-Verlag, Berlin-Heidelberg, 1981 
  12. [12] D.Q. Jiang and J.J. Wei: “Existence of positive periodic solutions for Volterra integro-differential equations”, Acta Mathematica Scientia, Vol. 21B(4), (2002), pp. 553–560. Zbl1035.45003
  13. [13] D.Q. Jiang and J.J. Wei: “Existence of positive periodic solutions of nonautonomous differential equations with delay(in Chinese)”, Chinese Annals of Mathematics, 20A(6), (1999), pp. 715–720. Zbl0948.34046
  14. [14] G. Karakostas, Ch.G. Philos and Y.G. Sficas: “Stable steady state of some population models”, J. Dyn. Diff. Eqns, Vol. 4(1), (1992), pp. 161–190. http://dx.doi.org/10.1007/BF01048159 Zbl0744.34071
  15. [15] Y. Kuang: Delay differential equations with applications in population dynamics, Academic Press, New York, 1993. 
  16. [16] M.R.S. Kulenovic and G. Ladas: “Linearized oscillations in population dynamics”, Bull. Math. Bio., Vol. 49, (1987), pp. 615–627. http://dx.doi.org/10.1016/S0092-8240(87)90005-X Zbl0634.92013
  17. [17] M.R.S. Kulenovic, G. Ladas and A. Meimaridou: “On oscillation of nonlinear delay differential equations”, Quart. Appl. Math., Vol. 45, (1987), pp. 155–164. Zbl0627.34076
  18. [18] G.S. Ladde, V. Lakshmikantham and B.G. Zhang: Oscillation Theory of Differential Equations with Deviating Arguments, Marcel Dekker, New York, 1987. Zbl0832.34071
  19. [19] G. Ladas and I.P. Stavroulakis: “Oscillations caused by several retarded and advanced argument”, J. Differential Equations, Vol. 44, (1982), pp. 134–152. http://dx.doi.org/10.1016/0022-0396(82)90029-8 Zbl0452.34058
  20. [20] E. Liz, M. Pinto, V. Tkachenko and S. Trofimchuk: “A global stability criterion for a family of delayed population models”, Quarterly of Applied Mathematics, Vol. 63, (2005), pp. 56–70. Zbl1093.34038
  21. [21] E. Liz, E. Trofimchuk and S. Trofimchuk: “Mackey-Glass type delay differential equations near the boundary of absolute stability”, Journal of Mathematical Analysis and Applications, Vol. 275, (2002), pp. 747–760. http://dx.doi.org/10.1016/S0022-247X(02)00416-X Zbl1022.34071
  22. [22] J. Luo and J. Yu: “Global asymptotic stability of nonautonomous mathematical ecological equations with distributed deviating arguments(in Chinese)”, Acta Mathematica Sinica, Vol. 41, (1998), pp. 1273–1282. Zbl1027.34088
  23. [23] A. Makroglou and Yang Kuang: “Some analytical and numerical results for a nonlinear Volterra integro-differential equation with periodic solution modeling hematopoiesis”, Proceedings of Hercma, 2005. Zbl1244.65242
  24. [24] M.C. Mackey and L. Glass: “Oscillation and chaos in physiological control system”, Science, Vol. 197, (1977), pp. 287–289. http://dx.doi.org/10.1126/science.267326 
  25. [25] R. Redlinger: “On Volterra's population equation with diffusion”, SIAM J. Math. Anal, Vol. 16, (1985), pp. 135–142. http://dx.doi.org/10.1137/0516008 Zbl0593.92014
  26. [26] R. Redlinger: “Exitence-theorems for Semiliner parabolic Systems with Functional”, Nonlinear Anal. TMA., Vol.8, (1984), pp. 667–682. http://dx.doi.org/10.1016/0362-546X(84)90011-7 
  27. [27] S.H. Saker: “Oscillation and global attractivity in hematopoiesis model with periodic coefficients”, Applied Mathematics and Computation, Vol. 142, (2003), pp. 477–494. http://dx.doi.org/10.1016/S0096-3003(02)00315-6 Zbl1048.34114
  28. [28] S.H. Saker: “Oscillation and global attractivity in hematopoiesis model with delay time”, Applied Mathematics and Computation, Vol. 136, (2003), pp. 241–250. http://dx.doi.org/10.1016/S0096-3003(02)00035-8 Zbl1026.34082
  29. [29] K. Schmitt: “Oscillation in nonlinear differential-delay equations, Resear Notes in Mathematics”, In: F. Kappel and W. Schappacher (Eds.): Abstract Cauchy Problems and Functional Differential Equations,Pitman Advanced Publishing Program, Boston, Lonton, Melbourne, 1981, pp. 191–211. 
  30. [30] M.M.A. Sheikh, Zaghrout and A. Ammar: “Oscillation and global attractivity in delay equation of population dynamics”, Appl. Math. Comput., Vol. 77(2–3), (1996), pp. 195–204. Zbl0848.92018
  31. [31] H. Smith: Monotone Dynamical Systems, AMS Surveys andMonographs Providence, Hode Island, 1995. 
  32. [32] C.C. Travis and G.F. Webb: “Existence and stability for partial functional differential equations”, Trans. Amer. Math. Soc., Vol. 200, (1974), pp. 395–418. http://dx.doi.org/10.2307/1997265 Zbl0299.35085
  33. [33] C.C. Travis and G.F. Webb: “Partial differential equations with deviating arguments in the time variable”, J. Math. Anal. Appl., Vol. 56, (1976), pp. 397–409. http://dx.doi.org/10.1016/0022-247X(76)90052-4 Zbl0349.35071
  34. [34] A. Wan, D.Q. Jiang and X.J. Xu: “A new existence theory for positive periodic solutions to functional differential equations”, Computers and Mathematics with Applications, Vol. 47, (2004), pp. 1257–1262. http://dx.doi.org/10.1016/S0898-1221(04)90120-4 Zbl1073.34082
  35. [35] P. Weng and M. Liang: “The existence and behavior of periodic solution of Hematopoiesis model”, Mathematica Applicate, Vol. 8(4), (1995), pp. 434–439. Zbl0949.34517
  36. [36] P. Weng: “Asymptotic stability for a class of integro-differential equations with infinite delay”, Matheamtica Applicta, Vol. 14(1), (2001), pp. 22–27. Zbl1007.45007
  37. [37] P. Weng: “Global attractivity of periodic solution in a model of Hematopoiesis”, Computers and Mathematics with Applications, Vol. 44, (2002), pp. 1019–1030. http://dx.doi.org/10.1016/S0898-1221(02)00211-0 Zbl1035.45004
  38. [38] P. Weng and Z. Dai: “Global attractivity for a model of hematopoiesis(in Chinese)”, Journal Of Southchina Normal University, Vol. 2, (2001), pp. 12–19. Zbl0973.92010
  39. [39] Jianhong Wu: Theory and Appliation of Partial Functional Differential Equation, Applied Mathematical Sciences, Vol. 119, Springer, 1996. 
  40. [40] Yuanjie Yang and Joseph. W.H. So: “Dynamics for the Diffusive Nicholson's Blowflies Equation. Proceeding of the International Conference on Dynamical Systems and Differential Equation” (Springfiled, Missouri, U.S.A. M29-June, 1996), Volume II: Wenxiong Chen and Shou Chucan Hu (Eds.): An added Volumeto discrete and continuous Dynamical Systems, 1998, pp. 333–352. Reaction-Diffusion Equation with time delay:Theory, Appliation and Numericalsimulation. 
  41. [41] Qixiao Ye and Zhengyuan Li: Introduction to the reaction-diffusion equation(in Chinese), Scienc Press, Benjing, 1990. Zbl0784.35050
  42. [42] Xiaoqiang Zhao: Dynamical Systems in Population Biology, Springer, New York, 2003. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.