Short separating geodesics for multiply connected domains
Open Mathematics (2011)
- Volume: 9, Issue: 5, page 984-996
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] Ahlfors L.V., Complex Analysis, 3rd ed., Internat. Ser. Pure Appl. Math., McGraw-Hill, New York, 1978
- [2] Buser P., Geometry and Spectra of Compact Riemann Surfaces, Progr. Math., 106, Birkhäuser, Boston, 1992 Zbl0770.53001
- [3] Buser P., Seppälä M., Short homology bases for Riemann surfaces, preprint available at http://www.math.fsu.edu/vseppala/papers/ShortHomology/ShortHomology.pdf Zbl1004.30030
- [4] Carleson L., Gamelin T.W., Complex Dynamics, Universitext Tracts Math., Springer, New York, 1993 Zbl0782.30022
- [5] Comerford M., A straightening theorem for non-autonomous iteration, preprint available at http://arxiv.org/abs/1106.4581
- [6] Conway J.B., Functions of One Complex Variable, Grad. Texts in Math., 11, Springer, New York-Heidelberg, 1973 Zbl0277.30001
- [7] Hubbard J.H., Teichmüller Theory and Applications to Geometry, Topology, and Dynamics - Volume 1: Teichmüller Theory, Matrix Editions, Ithaca, 2006 Zbl1102.30001
- [8] Keen L., Lakic N., Hyperbolic Geometry from a Local Viewpoint, London Math. Soc. Stud. Texts, 68, Cambridge University Press, Cambridge, 2007 http://dx.doi.org/10.1017/CBO9780511618789 Zbl1190.30001
- [9] Milnor J., Dynamics in One Complex Variable, 3rd ed., Ann. of Math. Stud., 160, Princeton University Press, Princeton, 2006 Zbl1085.30002
- [10] Newman M.H.A., Elements of the Topology of Plane Sets of Points, 2nd ed., Cambridge University Press, Cambridge, 1961
- [11] Parlier H., The homology systole of hyperbolic Riemann surfaces, Geom. Dedicata (in press), DOI: 10.1007/s10711-011-9613-0 Zbl1246.53060
- [12] Parlier H., Separating simple closed geodesics and short homology bases on Riemann surfaces, preprint available at http://homeweb.unifr.ch/parlierh/pub/articleHomology.pdf