Vector bundles on Hirzebruch surfaces whose twists by a non-ample line bundle have natural cohomology
Edoardo Ballico; Francesco Malaspina
Open Mathematics (2008)
- Volume: 6, Issue: 1, page 143-148
- ISSN: 2391-5455
Access Full Article
topAbstract
top
Fe(h + ef) have natural cohomology, i.e. h 0(F e, E(tM)) > 0 implies h 1(F e, E(tM)) = 0.
How to cite
topReferences
top- [1] Catanese F., Footnotes to a theorem of Reider, In: Sommese A.J., Biancofiore A., Livorni E.L. (Eds.), Algebraic Geometry Proceedings(L’Aquila 1988), Lecture Notesin Math. 1417, Springer, Berlin, 1990, 67–74 http://dx.doi.org/10.1007/BFb0083333
- [2] Fogarty J., Algebraic families on analgebraic surface, Amer. J. Math., 1968, 90, 511–521 http://dx.doi.org/10.2307/2373541 Zbl0176.18401
- [3] Hartshorne R., Stable reflexive sheaves, Math. Ann., 1980, 254, 121–176 http://dx.doi.org/10.1007/BF01467074 Zbl0431.14004
- [4] Huybrechts D., Lehn M., The geometry of moduli spaces of sheaves, Friedr. Vieweg & Sohn, Braunschweig, 1997 Zbl0872.14002