A fixed point theorem for affine mappings and its application to elasticity theory
Open Mathematics (2010)
- Volume: 8, Issue: 6, page 1104-1108
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] Adams R.A., Sobolev Spaces, Pure Appl. Math., 65, Academic Press, New York-San Francisco-London, 1975
- [2] Chow S.-N., Hale J.K., Strongly limit-compact maps, Funkcial. Ekvac., 1974, 17(1), 31–38 Zbl0297.47048
- [3] Hino Y., Murakami S., Periodic solutions of a linear Volterra system, In: Differential Equations, Proc. EQUADIFF Conf., Xanthi 1987, Lecture Notes Pure Appl. Math., 118, Dekker, New York, 1989, 319–326
- [4] Lions J.L., Magenes E., Non-Homogeneous Boundary Value Problems and Applications. Vol. I–III, Grundlehren Math. Wiss., 181–183, Springer, Berlin-Heidelberg-New York, 1972–1973
- [5] Makay G., Periodic solutions of linear differential and integral equations, Differential Integral Equations, 1995, 8(8), 2177–2187 Zbl0834.34088
- [6] Makay G., On some possible extensions of Massera’s theorem, In: Proceedings of the 6th Colloquium on the Qualitative Theory of Differential Equations, August 10–14, 1999, Szeged, Electron. J. Qual. Theory Differ. Equ., 2000, Suppl., No. 16
- [7] Massera J., The existence of periodic solutions of systems of differential equations, Duke Math. J., 1950, 17(4), 457–475 http://dx.doi.org/10.1215/S0012-7094-50-01741-8 Zbl0038.25002
- [8] Murakami S., Naito T., Minh N.V., Massera’s theorem for almost periodicity of solutions of functional differential equations, J. Math. Soc. Japan (in press) Zbl1070.34093
- [9] Pazy A., Semigroups of Linear Operators and Applications to Partial Differential Equations, Appl. Math. Sci., 44, Springer, Berlin, 1983 Zbl0516.47023
- [10] Shin J.S., Naito T., Semi-Fredholm operators and periodic solutions for linear functional differential equations, J. Differential Equations, 1999, 153(2), 407–441 http://dx.doi.org/10.1006/jdeq.1998.3547
- [11] Yoshizawa T., Stability Theory and the Existence of Periodic Solutions and Almost Periodic Solutions, Appl. Math. Sci., 14, Springer, Berlin-Heidelberg-New York, 1975
- [12] Yosida K., Functional Analysis, Springer, Berlin-Göttingen-Heidelberg, 1965