Numerical solution of the Maxwell equations in time-varying media using Magnus expansion

István Faragó; Ágnes Havasi; Robert Horváth

Open Mathematics (2012)

  • Volume: 10, Issue: 1, page 137-149
  • ISSN: 2391-5455

Abstract

top
For the Maxwell equations in time-dependent media only finite difference schemes with time-dependent conductivity are known. In this paper we present a numerical scheme based on the Magnus expansion and operator splitting that can handle time-dependent permeability and permittivity too. We demonstrate our results with numerical tests.

How to cite

top

István Faragó, Ágnes Havasi, and Robert Horváth. "Numerical solution of the Maxwell equations in time-varying media using Magnus expansion." Open Mathematics 10.1 (2012): 137-149. <http://eudml.org/doc/269193>.

@article{IstvánFaragó2012,
abstract = {For the Maxwell equations in time-dependent media only finite difference schemes with time-dependent conductivity are known. In this paper we present a numerical scheme based on the Magnus expansion and operator splitting that can handle time-dependent permeability and permittivity too. We demonstrate our results with numerical tests.},
author = {István Faragó, Ágnes Havasi, Robert Horváth},
journal = {Open Mathematics},
keywords = {Maxwell equations; Numerical solution; Magnus expansion; Operator splitting; numerical solution; operator splitting},
language = {eng},
number = {1},
pages = {137-149},
title = {Numerical solution of the Maxwell equations in time-varying media using Magnus expansion},
url = {http://eudml.org/doc/269193},
volume = {10},
year = {2012},
}

TY - JOUR
AU - István Faragó
AU - Ágnes Havasi
AU - Robert Horváth
TI - Numerical solution of the Maxwell equations in time-varying media using Magnus expansion
JO - Open Mathematics
PY - 2012
VL - 10
IS - 1
SP - 137
EP - 149
AB - For the Maxwell equations in time-dependent media only finite difference schemes with time-dependent conductivity are known. In this paper we present a numerical scheme based on the Magnus expansion and operator splitting that can handle time-dependent permeability and permittivity too. We demonstrate our results with numerical tests.
LA - eng
KW - Maxwell equations; Numerical solution; Magnus expansion; Operator splitting; numerical solution; operator splitting
UR - http://eudml.org/doc/269193
ER -

References

top
  1. [1] Bagrinovskiĭ K.A., Godunov S.K., Difference schemes for multidimensional problems, Dokl. Akad. Nauk. SSSR, 1957, 115, 431–433 (in Russian) Zbl0087.12201
  2. [2] Botchev M., Faragó I., Havasi Á., Testing weighted splitting schemes on a one-column transport-chemistry model, International Journal of Environment and Pollution, 2004, 22(1–2), 3–16 Zbl1151.65343
  3. [3] Botchev M.A., Faragó I., Horváth R., Application of operator splitting to the Maxwell equations including a source term, Appl. Numer. Math., 2009, 59(3–4), 522–541 http://dx.doi.org/10.1016/j.apnum.2008.03.031 Zbl1159.78346
  4. [4] Csomós P., Faragó I., Error analysis of the numerical solution of split differential equations, Math. Comput. Modelling, 2008, 48(7–8), 1090–1106 http://dx.doi.org/10.1016/j.mcm.2007.12.014 Zbl1187.65084
  5. [5] Csomós P., Faragó I., Havasi Á., Weighted sequential splittings and their analysis, Comput. Math. Appl., 2005, 50(7), 1017–1031 http://dx.doi.org/10.1016/j.camwa.2005.08.004 Zbl1086.65053
  6. [6] Faragó I., Havasi Á., Horváth R., On the order of operator splitting methods for non-autonomous systems (submitted) Zbl1243.65077
  7. [7] Fante R., Transmission of electromagnetic waves into time-varying media, IEEE Trans. Antennas and Propagation, 1971, 19(3), 417–424 http://dx.doi.org/10.1109/TAP.1971.1139931 
  8. [8] Felsen L., Whitman G., Wave propagation in time-varying media, IEEE Trans. Antennas and Propagation, 1970, 18(2), 242–253 http://dx.doi.org/10.1109/TAP.1970.1139657 
  9. [9] Harfoush F.A., Taflove A., Scattering of electromagnetic waves by a material half-space with a time-varying conductivity, IEEE Trans. Antennas and Propagation, 1991, 39(7), 898–906 http://dx.doi.org/10.1109/8.86907 
  10. [10] Horváth R., Uniform treatment of numerical time-integrations of the Maxwell equations, In: Proceedings Scientific Computing in Electrical Engineering, Eindhoven, June 23–28, 2002, Math. Ind., 4, Springer, Berlin, 2003, 231–239 Zbl1108.78020
  11. [11] Hundsdorfer W., Verwer J., Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations, Springer Ser. Comput. Math., 33, Springer, Berlin, 2003 Zbl1030.65100
  12. [12] Karlsfeld S., Oteo J.A., Recursive generation of higher-order terms in the Magnus expansion, Phys. Rev. A, 1989, 39(7), 3270–3273 http://dx.doi.org/10.1103/PhysRevA.39.3270 
  13. [13] Lee J.H., Kalluri D.K., Three-dimensional FDTD simulation of electromagnetic wave transformation in a dynamic inhomogeneous magnetized plasma, IEEE Trans. Antennas and Propagation, 1999, 47(7), 1146–1151 http://dx.doi.org/10.1109/8.785745 
  14. [14] Magnus W., On the exponential solution of differential equations for a linear operator, Comm. Pure Appl. Math., 1954, 7(4), 649–673 http://dx.doi.org/10.1002/cpa.3160070404 Zbl0056.34102
  15. [15] Marchuk G.I., Splitting Methods, Nauka, Moscow, 1988 (in Russian) Zbl0653.65065
  16. [16] Moan P.C., Oteo J.A., Ros J., On the existence of the exponential solution of linear differential systems, J. Phys. A, 1999, 32(27), 5133–5139 http://dx.doi.org/10.1088/0305-4470/32/27/311 Zbl0945.34004
  17. [17] Strang G., On the construction and comparison of difference schemes, SIAM J. Numer. Anal., 1968, 5(3), 506–517 http://dx.doi.org/10.1137/0705041 Zbl0184.38503
  18. [18] Taflove A., Hagness S.C., Computational Electrodynamics: the Finite-Difference Time-Domain Method, 3rd ed., Artech House, Boston, 2005 
  19. [19] Taylor C.D., Lam D.-H., Shumpert T.H., Electromagnetic scattering in time varying, inhomogeneous media, Interaction Notes, 41, Mississippi State University, State College, Mississippi, 1968 
  20. [20] Vorgul I., On Maxwell’s equations in non-stationary media, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 2008, 366(1871), 1781–1788 http://dx.doi.org/10.1098/rsta.2007.2186 Zbl1153.78309
  21. [21] Wu R., Gao B.-Q., The analysis of 3 dB microstrip directional coupler in time-varying media by FDTD method, In: 2nd International Conference on Microwave and Millimeter Wave Technology, 2000, ICMMT, Beijing, 2000, 375–378 
  22. [22] Yee K.S., Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media, IEEE Trans. Antennas and Propagation, 1966, 14(3), 302–307 http://dx.doi.org/10.1109/TAP.1966.1138693 Zbl1155.78304
  23. [23] Zhang Y., Gao B.-Q., Propagation of cylindrical waves in media of time-dependent permittivity, Chinese Phys. Lett., 2005, 22(2), 446–449 http://dx.doi.org/10.1088/0256-307X/22/2/049 
  24. [24] Zlatev Z., Dimov I., Computational and Numerical Challenges in Environmental Modelling, Stud. Comput. Math., 13, Elsevier, Amsterdam, 2006 Zbl1120.65103

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.