Fundamental groups and Diophantine geometry

Minhyong Kim

Open Mathematics (2010)

  • Volume: 8, Issue: 4, page 633-645
  • ISSN: 2391-5455

Abstract

top
This is a brief exposition on the uses of non-commutative fundamental groups in the study of Diophantine problems.

How to cite

top

Minhyong Kim. "Fundamental groups and Diophantine geometry." Open Mathematics 8.4 (2010): 633-645. <http://eudml.org/doc/269201>.

@article{MinhyongKim2010,
abstract = {This is a brief exposition on the uses of non-commutative fundamental groups in the study of Diophantine problems.},
author = {Minhyong Kim},
journal = {Open Mathematics},
keywords = {Fundamental group; Diophantine geometry; fundamental group},
language = {eng},
number = {4},
pages = {633-645},
title = {Fundamental groups and Diophantine geometry},
url = {http://eudml.org/doc/269201},
volume = {8},
year = {2010},
}

TY - JOUR
AU - Minhyong Kim
TI - Fundamental groups and Diophantine geometry
JO - Open Mathematics
PY - 2010
VL - 8
IS - 4
SP - 633
EP - 645
AB - This is a brief exposition on the uses of non-commutative fundamental groups in the study of Diophantine problems.
LA - eng
KW - Fundamental group; Diophantine geometry; fundamental group
UR - http://eudml.org/doc/269201
ER -

References

top
  1. [1] Coates J., Kim M., Selmer varieties for curves with CM Jacobians, preprint available at http://arxiv.org/abs/0810.3354 [WoS] Zbl1283.11092
  2. [2] Deligne P., Le groupe fondamental de la droite projective moins trois points, In: Galois groups over ℚ, Berkeley, 1987, Math. Sci. Res. Inst. Publ., 16, Springer, New York, 1989, 79–297 [Crossref] 
  3. [3] Furusho H., p-adic multiple zeta values. I: p-adic multiple polylogarithms and the p-adic KZ equation, Invent. Math., 2004, 155(2), 253–286 http://dx.doi.org/10.1007/s00222-003-0320-9[Crossref] Zbl1061.11034
  4. [4] Kim M., The motivic fundamental group of ℙ1 0; 1;∞ and the theorem of Siegel, Invent. Math., 2005, 161(3), 629–656 http://dx.doi.org/10.1007/s00222-004-0433-9 
  5. [5] Kim M., The unipotent Albanese map and Selmer varieties for curves, Publ. Res. Inst. Math. Sci., 2009, 45(1), 89–133 http://dx.doi.org/10.2977/prims/1234361156[WoS][Crossref] Zbl1165.14020
  6. [6] Kim M., p-adic L-functions and Selmer varieties associated to elliptic curves with complex multiplication, Ann. of Math., (in press), preprint available at http://arxiv.org/abs/0710.5290 Zbl1223.11080
  7. [7] Kim M., Tamagawa A., The ℓ-component of the unipotent Albanese map, Math. Ann., 2008, 340(1), 223–235 http://dx.doi.org/10.1007/s00208-007-0151-x[Crossref][WoS] Zbl1126.14035
  8. [8] Weil A., Généralisation des fonctions abéliennes, J. Math. Pures Appl., 1938, 17(9), 47–87 Zbl0018.06302

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.