Global and exponential attractors for a Caginalp type phase-field problem
Open Mathematics (2013)
- Volume: 11, Issue: 9, page 1651-1676
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topBrice Bangola. "Global and exponential attractors for a Caginalp type phase-field problem." Open Mathematics 11.9 (2013): 1651-1676. <http://eudml.org/doc/269208>.
@article{BriceBangola2013,
abstract = {We deal with a generalization of the Caginalp phase-field model associated with Neumann boundary conditions. We prove that the problem is well posed, before studying the long time behavior of solutions. We establish the existence of the global attractor, but also of exponential attractors. Finally, we study the spatial behavior of solutions in a semi-infinite cylinder, assuming that such solutions exist.},
author = {Brice Bangola},
journal = {Open Mathematics},
keywords = {Caginalp phase-field model; Neumann boundary conditions; Well-posedness; Long time behavior of solutions; Global attractor; Exponential attractor; Spatial behavior of solutions; Semi-infinite cylinder; well-posedness; spatial behavior of solutions; semi-infinite cylinder},
language = {eng},
number = {9},
pages = {1651-1676},
title = {Global and exponential attractors for a Caginalp type phase-field problem},
url = {http://eudml.org/doc/269208},
volume = {11},
year = {2013},
}
TY - JOUR
AU - Brice Bangola
TI - Global and exponential attractors for a Caginalp type phase-field problem
JO - Open Mathematics
PY - 2013
VL - 11
IS - 9
SP - 1651
EP - 1676
AB - We deal with a generalization of the Caginalp phase-field model associated with Neumann boundary conditions. We prove that the problem is well posed, before studying the long time behavior of solutions. We establish the existence of the global attractor, but also of exponential attractors. Finally, we study the spatial behavior of solutions in a semi-infinite cylinder, assuming that such solutions exist.
LA - eng
KW - Caginalp phase-field model; Neumann boundary conditions; Well-posedness; Long time behavior of solutions; Global attractor; Exponential attractor; Spatial behavior of solutions; Semi-infinite cylinder; well-posedness; spatial behavior of solutions; semi-infinite cylinder
UR - http://eudml.org/doc/269208
ER -
References
top- [1] Babin A., Nicolaenko B., Exponential attractors of reaction-diffusion systems in an unbounded domain, J. Dynam. Differential Equations, 1995, 7(4), 567–590 http://dx.doi.org/10.1007/BF02218725 Zbl0846.35061
- [2] Bates P.W., Zheng S.M., Inertial manifolds and inertial sets for the phase-field equations, J. Dynam. Differential Equations, 1992, 4(2), 375–398 http://dx.doi.org/10.1007/BF01049391 Zbl0758.35040
- [3] Brezis H., Analyse Fonctionnelle, Collect. Math. Appl. Maitrise, Masson, Paris, 1983 Zbl0511.46001
- [4] Brochet D., Hilhorst D., Universal attractor and inertial sets for the phase field model, Appl. Math. Lett., 1991, 4(6), 59–62, 1991 http://dx.doi.org/10.1016/0893-9659(91)90076-8 Zbl0773.35028
- [5] Brochet D., Hilhorst D., Chen X., Finite-dimensional exponential attractor for the phase field model, Appl. Anal., 1993, 49(3–4), 197–212 http://dx.doi.org/10.1080/00036819108840173 Zbl0790.35052
- [6] Brochet D., Hilhorst D., Novick-Cohen A., Finite-dimensional exponential attractor for a model for order-disorder and phase separation, Appl. Math. Lett., 1994, 7(3), 83–87 http://dx.doi.org/10.1016/0893-9659(94)90118-X Zbl0803.35076
- [7] Caginalp G., An analysis of a phase field model of a free boundary, Arch. Rational Mech. Anal., 1986, 92(3), 205–245 http://dx.doi.org/10.1007/BF00254827 Zbl0608.35080
- [8] Caginalp G., The role of microscopic anisotropy in the macroscopic behavior of a phase boundary, Ann. Physics, 1986, 172(1), 136–155 http://dx.doi.org/10.1016/0003-4916(86)90022-9
- [9] Cherfils L., Miranville A., Some results on the asymptotic behavior of the Caginalp system with singular potentials, Adv. Math. Sci. Appl., 2007, 17(1), 107–129 Zbl1145.35042
- [10] Cherfils L., Miranville A., On the Caginalp system with dynamic boundary conditions and singular potentials, Appl. Math., 2009, 54(2), 89–115 http://dx.doi.org/10.1007/s10492-009-0008-6 Zbl1212.35012
- [11] Christov C.I., Jordan P.M., Heat conduction paradox involving second-sound propagation in moving media, Phys. Rev. Lett., 2005, 94(15), #154301 http://dx.doi.org/10.1103/PhysRevLett.94.154301
- [12] Conti M., Gatti S., Miranville A., Asymptotic behavior of the Caginalp phase-field system with coupled dynamic boundary conditions, Discrete Contin. Dyn. Syst. Ser., 2012, S5(3), 485–505 Zbl1244.35067
- [13] Eden A., Foias C., Nicolaenko B., Temam R., Exponential Attractors for Dissipative Evolution Equations, RAM Res. Appl. Math., 37, Masson/John Wiley & Sons, Paris/Chichester, 1994
- [14] Fabrie P., Galusinski C., Exponential attractors for a partially dissipative reaction system, Asymptotic Anal., 1996, 12(4), 329–354 Zbl1028.35026
- [15] Flavin J.N., Knops R.J., Payne L.E., Decay estimates for the constrained elastic cylinder of variable cross section, Quart. Appl. Math., 1989, 47(2), 325–350 Zbl0706.73015
- [16] Gurtin M.E., Chen P.J., On a theory of heat conduction involving two temperatures, Z. Angew. Math. Phys., 1968, 19(4), 614–627 http://dx.doi.org/10.1007/BF01594969 Zbl0159.15103
- [17] Landau L.D., Lifshitz E.M., Statistical Physics I, 3rd ed., Butterworth-Heinemann, Oxford, 1980 Zbl0080.19702
- [18] Lions J.-L., Magenes E., Problèmes aux Limites non Homogènes et Applications, 2, Travaux et Recherches Mathématiques, 18, Dunod, Paris, 1968 Zbl0197.06701
- [19] Miranville A., Exponential attractors for a class of evolution equations by a decomposition method, C. R. Acad. Sci. Paris Sér. I Math., 1999, 328(2), 145–150 http://dx.doi.org/10.1016/S0764-4442(99)80153-0 Zbl1101.35334
- [20] Miranville A., Some models of Cahn-Hilliard equations in nonisotropic media, M2AN Math. Model. Numer. Anal., 2000, 34(3), 539–554 http://dx.doi.org/10.1051/m2an:2000155 Zbl0965.35170
- [21] Miranville A., Some mathematical models in phase transition, Ravello, 2009 (lecture notes)
- [22] Miranville A., Quintanilla R., A generalization of the Caginalp phase-field system based on the Cattaneo law, Nonlinear Anal., 2009, 71(5–6), 2278–2290 http://dx.doi.org/10.1016/j.na.2009.01.061 Zbl1167.35304
- [23] Miranville A., Quintanilla R., Some generalizations of the Caginalp phase-field system, Appl. Anal., 2009, 88(6), 897–894 http://dx.doi.org/10.1080/00036810903042182 Zbl1178.35194
- [24] Miranville A., Quintanilla R., A Caginalp phase-field system with a nonlinear coupling, Nonlinear Anal. Real World Appl., 2010, 11(4), 2849–2861 http://dx.doi.org/10.1016/j.nonrwa.2009.10.008 Zbl1197.35082
- [25] Miranville A., Zelik S., Attractors for dissipative partial differential equations in bounded and unbounded domains, In: Handbook of Differential Equations: Evolutionary Equations, IV, Handb. Diff. Equ., Elsevier/North-Holland, Amsterdam, 2008, 103–200 http://dx.doi.org/10.1016/S1874-5717(08)00003-0
- [26] Quintanilla R., Spatial stability for the quasi-static problem of thermoelasticity, J. Elasticity, 2004, 76(2), 93–105 http://dx.doi.org/10.1007/s10659-004-3334-7 Zbl1060.74020
- [27] Temam R., Infinite-Dimensional Dynamical Systems in Mechanics and Physics, 2nd ed., Appl. Math. Sci., 68, Springer, New York, 1997 Zbl0871.35001
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.