Global and exponential attractors for a Caginalp type phase-field problem

Brice Bangola

Open Mathematics (2013)

  • Volume: 11, Issue: 9, page 1651-1676
  • ISSN: 2391-5455

Abstract

top
We deal with a generalization of the Caginalp phase-field model associated with Neumann boundary conditions. We prove that the problem is well posed, before studying the long time behavior of solutions. We establish the existence of the global attractor, but also of exponential attractors. Finally, we study the spatial behavior of solutions in a semi-infinite cylinder, assuming that such solutions exist.

How to cite

top

Brice Bangola. "Global and exponential attractors for a Caginalp type phase-field problem." Open Mathematics 11.9 (2013): 1651-1676. <http://eudml.org/doc/269208>.

@article{BriceBangola2013,
abstract = {We deal with a generalization of the Caginalp phase-field model associated with Neumann boundary conditions. We prove that the problem is well posed, before studying the long time behavior of solutions. We establish the existence of the global attractor, but also of exponential attractors. Finally, we study the spatial behavior of solutions in a semi-infinite cylinder, assuming that such solutions exist.},
author = {Brice Bangola},
journal = {Open Mathematics},
keywords = {Caginalp phase-field model; Neumann boundary conditions; Well-posedness; Long time behavior of solutions; Global attractor; Exponential attractor; Spatial behavior of solutions; Semi-infinite cylinder; well-posedness; spatial behavior of solutions; semi-infinite cylinder},
language = {eng},
number = {9},
pages = {1651-1676},
title = {Global and exponential attractors for a Caginalp type phase-field problem},
url = {http://eudml.org/doc/269208},
volume = {11},
year = {2013},
}

TY - JOUR
AU - Brice Bangola
TI - Global and exponential attractors for a Caginalp type phase-field problem
JO - Open Mathematics
PY - 2013
VL - 11
IS - 9
SP - 1651
EP - 1676
AB - We deal with a generalization of the Caginalp phase-field model associated with Neumann boundary conditions. We prove that the problem is well posed, before studying the long time behavior of solutions. We establish the existence of the global attractor, but also of exponential attractors. Finally, we study the spatial behavior of solutions in a semi-infinite cylinder, assuming that such solutions exist.
LA - eng
KW - Caginalp phase-field model; Neumann boundary conditions; Well-posedness; Long time behavior of solutions; Global attractor; Exponential attractor; Spatial behavior of solutions; Semi-infinite cylinder; well-posedness; spatial behavior of solutions; semi-infinite cylinder
UR - http://eudml.org/doc/269208
ER -

References

top
  1. [1] Babin A., Nicolaenko B., Exponential attractors of reaction-diffusion systems in an unbounded domain, J. Dynam. Differential Equations, 1995, 7(4), 567–590 http://dx.doi.org/10.1007/BF02218725 Zbl0846.35061
  2. [2] Bates P.W., Zheng S.M., Inertial manifolds and inertial sets for the phase-field equations, J. Dynam. Differential Equations, 1992, 4(2), 375–398 http://dx.doi.org/10.1007/BF01049391 Zbl0758.35040
  3. [3] Brezis H., Analyse Fonctionnelle, Collect. Math. Appl. Maitrise, Masson, Paris, 1983 Zbl0511.46001
  4. [4] Brochet D., Hilhorst D., Universal attractor and inertial sets for the phase field model, Appl. Math. Lett., 1991, 4(6), 59–62, 1991 http://dx.doi.org/10.1016/0893-9659(91)90076-8 Zbl0773.35028
  5. [5] Brochet D., Hilhorst D., Chen X., Finite-dimensional exponential attractor for the phase field model, Appl. Anal., 1993, 49(3–4), 197–212 http://dx.doi.org/10.1080/00036819108840173 Zbl0790.35052
  6. [6] Brochet D., Hilhorst D., Novick-Cohen A., Finite-dimensional exponential attractor for a model for order-disorder and phase separation, Appl. Math. Lett., 1994, 7(3), 83–87 http://dx.doi.org/10.1016/0893-9659(94)90118-X Zbl0803.35076
  7. [7] Caginalp G., An analysis of a phase field model of a free boundary, Arch. Rational Mech. Anal., 1986, 92(3), 205–245 http://dx.doi.org/10.1007/BF00254827 Zbl0608.35080
  8. [8] Caginalp G., The role of microscopic anisotropy in the macroscopic behavior of a phase boundary, Ann. Physics, 1986, 172(1), 136–155 http://dx.doi.org/10.1016/0003-4916(86)90022-9 
  9. [9] Cherfils L., Miranville A., Some results on the asymptotic behavior of the Caginalp system with singular potentials, Adv. Math. Sci. Appl., 2007, 17(1), 107–129 Zbl1145.35042
  10. [10] Cherfils L., Miranville A., On the Caginalp system with dynamic boundary conditions and singular potentials, Appl. Math., 2009, 54(2), 89–115 http://dx.doi.org/10.1007/s10492-009-0008-6 Zbl1212.35012
  11. [11] Christov C.I., Jordan P.M., Heat conduction paradox involving second-sound propagation in moving media, Phys. Rev. Lett., 2005, 94(15), #154301 http://dx.doi.org/10.1103/PhysRevLett.94.154301 
  12. [12] Conti M., Gatti S., Miranville A., Asymptotic behavior of the Caginalp phase-field system with coupled dynamic boundary conditions, Discrete Contin. Dyn. Syst. Ser., 2012, S5(3), 485–505 Zbl1244.35067
  13. [13] Eden A., Foias C., Nicolaenko B., Temam R., Exponential Attractors for Dissipative Evolution Equations, RAM Res. Appl. Math., 37, Masson/John Wiley & Sons, Paris/Chichester, 1994 
  14. [14] Fabrie P., Galusinski C., Exponential attractors for a partially dissipative reaction system, Asymptotic Anal., 1996, 12(4), 329–354 Zbl1028.35026
  15. [15] Flavin J.N., Knops R.J., Payne L.E., Decay estimates for the constrained elastic cylinder of variable cross section, Quart. Appl. Math., 1989, 47(2), 325–350 Zbl0706.73015
  16. [16] Gurtin M.E., Chen P.J., On a theory of heat conduction involving two temperatures, Z. Angew. Math. Phys., 1968, 19(4), 614–627 http://dx.doi.org/10.1007/BF01594969 Zbl0159.15103
  17. [17] Landau L.D., Lifshitz E.M., Statistical Physics I, 3rd ed., Butterworth-Heinemann, Oxford, 1980 Zbl0080.19702
  18. [18] Lions J.-L., Magenes E., Problèmes aux Limites non Homogènes et Applications, 2, Travaux et Recherches Mathématiques, 18, Dunod, Paris, 1968 Zbl0197.06701
  19. [19] Miranville A., Exponential attractors for a class of evolution equations by a decomposition method, C. R. Acad. Sci. Paris Sér. I Math., 1999, 328(2), 145–150 http://dx.doi.org/10.1016/S0764-4442(99)80153-0 Zbl1101.35334
  20. [20] Miranville A., Some models of Cahn-Hilliard equations in nonisotropic media, M2AN Math. Model. Numer. Anal., 2000, 34(3), 539–554 http://dx.doi.org/10.1051/m2an:2000155 Zbl0965.35170
  21. [21] Miranville A., Some mathematical models in phase transition, Ravello, 2009 (lecture notes) 
  22. [22] Miranville A., Quintanilla R., A generalization of the Caginalp phase-field system based on the Cattaneo law, Nonlinear Anal., 2009, 71(5–6), 2278–2290 http://dx.doi.org/10.1016/j.na.2009.01.061 Zbl1167.35304
  23. [23] Miranville A., Quintanilla R., Some generalizations of the Caginalp phase-field system, Appl. Anal., 2009, 88(6), 897–894 http://dx.doi.org/10.1080/00036810903042182 Zbl1178.35194
  24. [24] Miranville A., Quintanilla R., A Caginalp phase-field system with a nonlinear coupling, Nonlinear Anal. Real World Appl., 2010, 11(4), 2849–2861 http://dx.doi.org/10.1016/j.nonrwa.2009.10.008 Zbl1197.35082
  25. [25] Miranville A., Zelik S., Attractors for dissipative partial differential equations in bounded and unbounded domains, In: Handbook of Differential Equations: Evolutionary Equations, IV, Handb. Diff. Equ., Elsevier/North-Holland, Amsterdam, 2008, 103–200 http://dx.doi.org/10.1016/S1874-5717(08)00003-0 
  26. [26] Quintanilla R., Spatial stability for the quasi-static problem of thermoelasticity, J. Elasticity, 2004, 76(2), 93–105 http://dx.doi.org/10.1007/s10659-004-3334-7 Zbl1060.74020
  27. [27] Temam R., Infinite-Dimensional Dynamical Systems in Mechanics and Physics, 2nd ed., Appl. Math. Sci., 68, Springer, New York, 1997 Zbl0871.35001

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.