On the Caginalp system with dynamic boundary conditions and singular potentials

Laurence Cherfils; Alain Miranville

Applications of Mathematics (2009)

  • Volume: 54, Issue: 2, page 89-115
  • ISSN: 0862-7940

Abstract

top
This article is devoted to the study of the Caginalp phase field system with dynamic boundary conditions and singular potentials. We first show that, for initial data in H 2 , the solutions are strictly separated from the singularities of the potential. This turns out to be our main argument in the proof of the existence and uniqueness of solutions. We then prove the existence of global attractors. In the last part of the article, we adapt well-known results concerning the Łojasiewicz inequality in order to prove the convergence of solutions to steady states.

How to cite

top

Cherfils, Laurence, and Miranville, Alain. "On the Caginalp system with dynamic boundary conditions and singular potentials." Applications of Mathematics 54.2 (2009): 89-115. <http://eudml.org/doc/37811>.

@article{Cherfils2009,
abstract = {This article is devoted to the study of the Caginalp phase field system with dynamic boundary conditions and singular potentials. We first show that, for initial data in $H^2$, the solutions are strictly separated from the singularities of the potential. This turns out to be our main argument in the proof of the existence and uniqueness of solutions. We then prove the existence of global attractors. In the last part of the article, we adapt well-known results concerning the Łojasiewicz inequality in order to prove the convergence of solutions to steady states.},
author = {Cherfils, Laurence, Miranville, Alain},
journal = {Applications of Mathematics},
keywords = {Caginalp phase field system; singular potential; dynamic boundary conditions; global existence; global attractor; Łojasiewicz-Simon inequality; convergence to a steady state; Caginalp phase field system; singular potential; dynamic boundary conditions; global existence; global attractor},
language = {eng},
number = {2},
pages = {89-115},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the Caginalp system with dynamic boundary conditions and singular potentials},
url = {http://eudml.org/doc/37811},
volume = {54},
year = {2009},
}

TY - JOUR
AU - Cherfils, Laurence
AU - Miranville, Alain
TI - On the Caginalp system with dynamic boundary conditions and singular potentials
JO - Applications of Mathematics
PY - 2009
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 54
IS - 2
SP - 89
EP - 115
AB - This article is devoted to the study of the Caginalp phase field system with dynamic boundary conditions and singular potentials. We first show that, for initial data in $H^2$, the solutions are strictly separated from the singularities of the potential. This turns out to be our main argument in the proof of the existence and uniqueness of solutions. We then prove the existence of global attractors. In the last part of the article, we adapt well-known results concerning the Łojasiewicz inequality in order to prove the convergence of solutions to steady states.
LA - eng
KW - Caginalp phase field system; singular potential; dynamic boundary conditions; global existence; global attractor; Łojasiewicz-Simon inequality; convergence to a steady state; Caginalp phase field system; singular potential; dynamic boundary conditions; global existence; global attractor
UR - http://eudml.org/doc/37811
ER -

References

top
  1. Abels, H., Wilke, M., 10.1016/j.na.2006.10.002, Nonlinear Anal. 67 (2007), 3176-3193. (2007) Zbl1121.35018MR2347608DOI10.1016/j.na.2006.10.002
  2. Aizicovici, S., Feireisl, E., 10.1007/PL00001365, J. Evol. Equ. 1 (2001), 69-84. (2001) Zbl0973.35037MR1838321DOI10.1007/PL00001365
  3. Aizicovici, S., Feireisl, E., Issard-Roch, F., 10.1002/mma.215, Math. Methods Appl. Sci. 24 (2001), 277-287. (2001) Zbl0984.35026MR1818896DOI10.1002/mma.215
  4. Bates, P. W., Zheng, S., 10.1007/BF01049391, J. Dyn. Diff. Equations 4 (1992), 375-398. (1992) DOI10.1007/BF01049391
  5. Brochet, D., Chen, X., Hilhorst, D., 10.1080/00036819108840173, Appl. Anal. 49 (1993), 197-212. (1993) MR1289743DOI10.1080/00036819108840173
  6. Brokate, M., Sprekels, J., Hysteresis and phase transitions, Springer New York (1996). (1996) Zbl0951.74002MR1411908
  7. Caginalp, G., 10.1007/BF00254827, Arch. Ration. Mech. Anal. 92 (1986), 205-245. (1986) Zbl0608.35080MR0816623DOI10.1007/BF00254827
  8. Cherfils, L., Miranville, A., Some results on the asymptotic behavior of the Caginalp system with singular potentials, Adv. Math. Sci. Appl. 17 (2007), 107-129. (2007) Zbl1145.35042MR2337372
  9. Chill, R., Fašangová, E., Prüss, J., 10.1002/mana.200410431, Math. Nachr. 279 (2006), 1448-1462. (2006) Zbl1107.35058MR2269249DOI10.1002/mana.200410431
  10. Fischer, H. P., Maass, P., Dieterich, W., 10.1103/PhysRevLett.79.893, Phys. Rev. Letters 79 (1997), 893-896. (1997) DOI10.1103/PhysRevLett.79.893
  11. Fischer, H. P., Maass, P., Dieterich, W., 10.1209/epl/i1998-00550-y, Europhys. Letters 62 (1998), 49-54. (1998) DOI10.1209/epl/i1998-00550-y
  12. Gal, C. G., 10.1002/mma.757, Math. Methods Appl. Sci. 29 (2006), 2009-2036. (2006) Zbl1113.35031MR2268279DOI10.1002/mma.757
  13. Gal, C. G., Grasselli, M., 10.3934/dcds.2008.22.1009, Discrete Contin. Dyn. Syst. 22 (2008), 1009-1040. (2008) Zbl1160.35353MR2434980DOI10.3934/dcds.2008.22.1009
  14. Gatti, S., Miranville, A., Asymptotic behavior of a phase-field system with dynamic boundary conditions, Differential Equations: Inverse and Direct Problems (Proceedings of the workshop "Evolution Equations: Inverse and Direct Problems", Cortona, June 21-25, 2004). A series of Lecture Notes in Pure and Applied Mathematics, Vol. 251 A. Favini and A. Lorenzi CRC Press Boca Raton (2006), 149-170. (2006) Zbl1123.35310MR2275977
  15. Giorgi, C., Grasselli, M., Pata, V., 10.1512/iumj.1999.48.1793, Indiana Univ. Math. J. 48 (1999), 1395-1445. (1999) Zbl0940.35037MR1757078DOI10.1512/iumj.1999.48.1793
  16. Grasselli, M., Miranville, A., Pata, V., Zelik, S., 10.1002/mana.200510560, Math. Nachr. 280 (2007), 1475-1509. (2007) Zbl1133.35017MR2354975DOI10.1002/mana.200510560
  17. Grasselli, M., Petzeltová, H., Schimperna, G., 10.4171/ZAA/1277, Z. Anal. Anwend. 25 (2006), 51-72. (2006) Zbl1128.35021MR2216881DOI10.4171/ZAA/1277
  18. Grasselli, M., Petzeltová, H., Schimperna, G., 10.3934/cpaa.2006.5.827, Commun. Pure Appl. Anal. 5 (2006), 827-838. (2006) Zbl1134.35017MR2246010DOI10.3934/cpaa.2006.5.827
  19. Grasselli, M., Petzeltová, H., Schimperna, G., 10.1090/S0033-569X-07-01070-9, Q. Appl. Math. 65 (2007), 451-46. (2007) Zbl1140.35352MR2354882DOI10.1090/S0033-569X-07-01070-9
  20. Jendoubi, M. A., 10.1006/jfan.1997.3174, J. Funct. Anal. 153 (1998), 187-202. (1998) Zbl0895.35012MR1609269DOI10.1006/jfan.1997.3174
  21. Kenzler, R., Eurich, F., Maass, P., Rinn, B., Schropp, J., Bohl, E., Dieterich, W., 10.1016/S0010-4655(00)00159-4, Comput. Phys. Comm. 133 (2001), 139-157. (2001) Zbl0985.65114MR1809807DOI10.1016/S0010-4655(00)00159-4
  22. Łojasiewicz, S., Ensembles semi-analytiques, IHES Bures-sur-Yvette (1965), French. (1965) 
  23. Miranville, A., Rougirel, A., 10.1007/s00033-005-0017-6, Z. Angew. Math. Phys. 57 (2006), 244-268. (2006) Zbl1094.35102MR2214071DOI10.1007/s00033-005-0017-6
  24. Miranville, A., Zelik, S., Robust exponential attractors for singularly perturbed phase-field type equations, Electron. J. Differ. Equ. (2002), 1-28. (2002) Zbl1004.35024MR1911930
  25. Miranville, A., Zelik, S., 10.1002/mma.590, Math. Methods Appl. Sci. 28 (2005), 709-735. (2005) Zbl1068.35020MR2125817DOI10.1002/mma.590
  26. Prüss, J., Racke, R., Zheng, S., 10.1007/s10231-005-0175-3, Ann. Mat. Pura Appl. 185 (2006), 627-648. (2006) Zbl1232.35081MR2230586DOI10.1007/s10231-005-0175-3
  27. Prüss, J., Wilke, M., Maximal L p -regularity and long-time behaviour of the non-isothermal Cahn-Hilliard equation with dynamic boundary conditions, Operator Theory: Advances and Applications, Vol. 168 Birkhäuser Basel (2006), 209-236. (2006) Zbl1109.35060MR2240062
  28. Racke, R., Zheng, S., The Cahn-Hilliard equation with dynamic boundary conditions, Adv. Diff. Equ. 8 (2003), 83-110. (2003) Zbl1035.35050MR1946559
  29. Rybka, P., Hoffmann, K.-H., 10.1080/03605309908821458, Commun. Partial Differ. Equations 24 (1999), 1055-1077. (1999) Zbl0936.35032MR1680877DOI10.1080/03605309908821458
  30. Simon, L., 10.2307/2006981, Ann. Math. 118 (1983), 525-571. (1983) MR0727703DOI10.2307/2006981
  31. Temam, R., Infinite-Dimensional Dynamical Systems in Mechanics and Physics, 2nd edition, Springer New York (1997). (1997) MR1441312
  32. Wu, H., Zheng, S., 10.1016/j.jde.2004.05.004, J. Differ. Equations 204 (2004), 511-531. (2004) Zbl1068.35018MR2085545DOI10.1016/j.jde.2004.05.004
  33. Zhang, Z., 10.3934/cpaa.2005.4.683, Commun. Pure Appl. Anal. 4 (2005), 683-693. (2005) Zbl1082.35033MR2167193DOI10.3934/cpaa.2005.4.683
  34. Zhang, Z., 10.3934/cpaa.2005.4.683, Commun. Pure Appl. Anal. 4 (2005), 683-693. (2005) Zbl1082.35033MR2167193DOI10.3934/cpaa.2005.4.683

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.