Finite codimensional linear isometries on spaces of differentiable and Lipschitz functions

Hironao Koshimizu

Open Mathematics (2011)

  • Volume: 9, Issue: 1, page 139-146
  • ISSN: 2391-5455

Abstract

top
We characterize finite codimensional linear isometries on two spaces, C (n)[0; 1] and Lip [0; 1], where C (n)[0; 1] is the Banach space of n-times continuously differentiable functions on [0; 1] and Lip [0; 1] is the Banach space of Lipschitz continuous functions on [0; 1]. We will see they are exactly surjective isometries. Also, we show that C (n)[0; 1] and Lip [0; 1] admit neither isometric shifts nor backward shifts.

How to cite

top

Hironao Koshimizu. "Finite codimensional linear isometries on spaces of differentiable and Lipschitz functions." Open Mathematics 9.1 (2011): 139-146. <http://eudml.org/doc/269211>.

@article{HironaoKoshimizu2011,
abstract = {We characterize finite codimensional linear isometries on two spaces, C (n)[0; 1] and Lip [0; 1], where C (n)[0; 1] is the Banach space of n-times continuously differentiable functions on [0; 1] and Lip [0; 1] is the Banach space of Lipschitz continuous functions on [0; 1]. We will see they are exactly surjective isometries. Also, we show that C (n)[0; 1] and Lip [0; 1] admit neither isometric shifts nor backward shifts.},
author = {Hironao Koshimizu},
journal = {Open Mathematics},
keywords = {Linear isometry; Finite codimension; Continuously differentiable function; Lipschitz continuous function; The Banach-Stone theorem; Shift; finite codimensional isometries; spaces of differentiable functions; Banach-Stone theorem; shift},
language = {eng},
number = {1},
pages = {139-146},
title = {Finite codimensional linear isometries on spaces of differentiable and Lipschitz functions},
url = {http://eudml.org/doc/269211},
volume = {9},
year = {2011},
}

TY - JOUR
AU - Hironao Koshimizu
TI - Finite codimensional linear isometries on spaces of differentiable and Lipschitz functions
JO - Open Mathematics
PY - 2011
VL - 9
IS - 1
SP - 139
EP - 146
AB - We characterize finite codimensional linear isometries on two spaces, C (n)[0; 1] and Lip [0; 1], where C (n)[0; 1] is the Banach space of n-times continuously differentiable functions on [0; 1] and Lip [0; 1] is the Banach space of Lipschitz continuous functions on [0; 1]. We will see they are exactly surjective isometries. Also, we show that C (n)[0; 1] and Lip [0; 1] admit neither isometric shifts nor backward shifts.
LA - eng
KW - Linear isometry; Finite codimension; Continuously differentiable function; Lipschitz continuous function; The Banach-Stone theorem; Shift; finite codimensional isometries; spaces of differentiable functions; Banach-Stone theorem; shift
UR - http://eudml.org/doc/269211
ER -

References

top
  1. [1] Araujo J., On the separability problem for isometric shifts on C(X), J. Funct. Anal., 2009, 256(4), 1106–1117 http://dx.doi.org/10.1016/j.jfa.2008.11.013 Zbl1165.46009
  2. [2] Araujo J., Font J.J., Codimension 1 linear isometries on function algebras, Proc. Amer. Math. Soc., 1999, 127(8), 2273–2281 http://dx.doi.org/10.1090/S0002-9939-99-04718-8 Zbl0918.47031
  3. [3] Cambern M., Isometries of certain Banach algebras, Studia Math., 1965, 25, 217–225 Zbl0196.42702
  4. [4] Cambern M., Pathak V.D., Isometries of spaces of differentiable functions, Math. Japon., 1981, 26(3), 253–260 Zbl0464.46028
  5. [5] Crownover R.M., Commutants of shifts on Banach spaces, Michigan Math. J., 1972, 19(3), 233–247 http://dx.doi.org/10.1307/mmj/1029000896 Zbl0228.47016
  6. [6] Font J.J., Isometries between function algebras with finite codimensional range, Manuscripta Math., 1999, 100(1), 13–21 http://dx.doi.org/10.1007/s002290050192 Zbl0939.47023
  7. [7] Font J.J., On weighted composition operators between spaces of measurable functions, Quaest. Math., 1999, 22(2), 143–148 http://dx.doi.org/10.1080/16073606.1999.9632068 Zbl0945.47017
  8. [8] Gutek A., Hart D., Jamison J., Rajagopalan M., Shift operators on Banach spaces, J. Funct. Anal., 1991, 101(1), 97–119 http://dx.doi.org/10.1016/0022-1236(91)90150-4 Zbl0818.47028
  9. [9] Holub J.R., On shift operators, Canad. Math. Bull., 1988, 31(1), 85–94 http://dx.doi.org/10.4153/CMB-1988-013-8 Zbl0658.47032
  10. [10] Izuchi K., Douglas algebras which admit codimension 1 linear isometries, Proc. Amer. Math. Soc., 2001, 129(7), 2069–2074 http://dx.doi.org/10.1090/S0002-9939-00-05842-1 Zbl0977.46029
  11. [11] Jarosz K., Isometries in semisimple, commutative Banach algebras, Proc. Amer. Math. Soc., 1985, 94(1), 65–71 Zbl0577.46052
  12. [12] Jarosz K., Pathak V.D., Isometries between function spaces, Trans. Amer. Math. Soc., 1988, 305(1), 193–206 http://dx.doi.org/10.1090/S0002-9947-1988-0920154-7 Zbl0649.46024
  13. [13] Jiménez-Vargas A., Villegas-Vallecillos M., Into linear isometries between spaces of Lipschitz functions, Houston J. Math., 2008, 34(4), 1165–1184 Zbl1169.46004
  14. [14] Kasuga K., There are no codimension 1 linear isometries on the ball and polydisk algebras, Sci. Math. Jpn., 2001, 54(2), 387–390 and 2002, 56(1), 69–70 Zbl0994.32004
  15. [15] Matsumoto T., Watanabe S., Surjective linear isometries of the domain of a *-derivation equipped with the Cambern norm, Math. Z., 1999, 230(1), 185–200 http://dx.doi.org/10.1007/PL00004686 Zbl0927.47021
  16. [16] Pathak V.D., Isometries of C (n)[0; 1], Pacific J. Math., 1981, 94(1), 211–222 Zbl0393.46042
  17. [17] Rajagopalan M., Sundaresan K., Backward shifts on Banach spaces C(X), J. Math. Anal. Appl., 1996, 202(2), 485–491 http://dx.doi.org/10.1006/jmaa.1996.0329 Zbl0878.47014
  18. [18] Rajagopalan M., Sundaresan K., Backward shifts on Banach spaces C(X), II, In: Proceedings of the Tennessee Topology Conference, Nashville, 1996, World Scientific, River Edge, 1997, 199–205 Zbl0913.46017
  19. [19] Rao N.V., Roy A.K., Linear isometries of some function spaces, Pacific J. Math., 1971, 38(1), 177–192 Zbl0218.46026
  20. [20] Rudin W., Functional Analysis, 2nd ed., Internat. Ser. Pure Appl. Math., McGraw-Hill, New York, 1991 
  21. [21] Takagi H., Koshimizu H., Ariizumi H., Backward shifts on function algebras, J. Math. Anal. Appl. (in press), DOI: 10.1016/j.jmaa.2010.10.012 Zbl1217.47066
  22. [22] Takahasi S.-E., Okayasu T., A note on finite codimensional linear isometries of C(X) into C(Y), Internat. J. Math. Math. Sci., 1995, 18(4), 677–680 http://dx.doi.org/10.1155/S016117129500086X Zbl0844.46008
  23. [23] Takayama T., Wada J., Isometric shift operators on the disc algebra, Tokyo J. Math., 1998, 21(1), 115–120 http://dx.doi.org/10.3836/tjm/1270041989 Zbl0929.47018

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.