The k-Fibonacci matrix and the Pascal matrix
Open Mathematics (2011)
- Volume: 9, Issue: 6, page 1403-1410
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topSergio Falcon. "The k-Fibonacci matrix and the Pascal matrix." Open Mathematics 9.6 (2011): 1403-1410. <http://eudml.org/doc/269217>.
@article{SergioFalcon2011,
abstract = {We define the k-Fibonacci matrix as an extension of the classical Fibonacci matrix and relationed with the k-Fibonacci numbers. Then we give two factorizations of the Pascal matrix involving the k-Fibonacci matrix and two new matrices, L and R. As a consequence we find some combinatorial formulas involving the k-Fibonacci numbers.},
author = {Sergio Falcon},
journal = {Open Mathematics},
keywords = {Pascal matrix; k-Fibonacci numbers; Factorization of a matrix; -Fibonacci matrices; -Fibonacci numbers; factorization},
language = {eng},
number = {6},
pages = {1403-1410},
title = {The k-Fibonacci matrix and the Pascal matrix},
url = {http://eudml.org/doc/269217},
volume = {9},
year = {2011},
}
TY - JOUR
AU - Sergio Falcon
TI - The k-Fibonacci matrix and the Pascal matrix
JO - Open Mathematics
PY - 2011
VL - 9
IS - 6
SP - 1403
EP - 1410
AB - We define the k-Fibonacci matrix as an extension of the classical Fibonacci matrix and relationed with the k-Fibonacci numbers. Then we give two factorizations of the Pascal matrix involving the k-Fibonacci matrix and two new matrices, L and R. As a consequence we find some combinatorial formulas involving the k-Fibonacci numbers.
LA - eng
KW - Pascal matrix; k-Fibonacci numbers; Factorization of a matrix; -Fibonacci matrices; -Fibonacci numbers; factorization
UR - http://eudml.org/doc/269217
ER -
References
top- [1] Call G.S., Velleman D.J., Pascal’s matrices, Amer. Math. Monthly, 1993, 100(4), 372–376 http://dx.doi.org/10.2307/2324960 Zbl0788.05011
- [2] Falcón S., On sequences of products of two k-Fibonacci numbers, Int. J. Contemp. Math. Sci. (in press) Zbl06285596
- [3] Falcón S., Some tridiagonal matrices and the k-Fibonacci numbers. Appl. Math. Comput. (in press) Zbl06285596
- [4] Falcón S., Plaza Á., On the Fibonacci k-numbers, Chaos Solitons Fractals, 2007, 32(5), 1615–1624 http://dx.doi.org/10.1016/j.chaos.2006.09.022 Zbl1158.11306
- [5] Falcón S., Plaza Á., The k-Fibonacci sequence and the Pascal 2-triangle, Chaos Solitons Fractals, 2007, 33(1), 38–49 http://dx.doi.org/10.1016/j.chaos.2006.10.022 Zbl1152.11308
- [6] Lee G.-Y., Kim J.-S., The linear algebra of the k-Fibonacci matrix, Linear Algebra Appl., 2003, 373, 75–87 http://dx.doi.org/10.1016/S0024-3795(02)00596-7 Zbl1059.11018
- [7] Lee G.-Y., Kim J.-S., Cho S.-H., Some combinatorial identities via Fibonacci numbers, Discrete Appl. Math., 2003, 130(3), 527–534 http://dx.doi.org/10.1016/S0166-218X(03)00331-7 Zbl1020.05016
- [8] Lee G.-Y., Kim J.-S., Lee S.-G., Factorizations and eigenvalues of Fibonacci and symmetric Fibonacci matrices, Fibonacci Quart., 2002, 40(3), 203–211 Zbl1079.11012
- [9] Lee G.-Y., Lee S.-G., Shin H.-G., On the k-generalized Fibonacci matrix Q k, Linear Algebra Appl., 1997, 251, 73–88 http://dx.doi.org/10.1016/0024-3795(95)00553-6 Zbl0917.05046
- [10] Peart P., Woodson L., Triple factorization of some Riordan matrices, Fibonacci Quart., 1993, 31(2), 121–128 Zbl0778.05005
- [11] Zhang Z., The linear algebra of the generalized Pascal matrix, Linear Algebra Appl., 1997, 250, 51–60 http://dx.doi.org/10.1016/0024-3795(95)00452-1
- [12] Zhang Z., Wang X., A factorization of the symmetric Pascal matrix involving the Fibonacci matrix, Discrete Appl. Math., 2007, 155(17), 2371–2376 http://dx.doi.org/10.1016/j.dam.2007.06.024 Zbl1125.05023
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.