The k-Fibonacci matrix and the Pascal matrix

Sergio Falcon

Open Mathematics (2011)

  • Volume: 9, Issue: 6, page 1403-1410
  • ISSN: 2391-5455

Abstract

top
We define the k-Fibonacci matrix as an extension of the classical Fibonacci matrix and relationed with the k-Fibonacci numbers. Then we give two factorizations of the Pascal matrix involving the k-Fibonacci matrix and two new matrices, L and R. As a consequence we find some combinatorial formulas involving the k-Fibonacci numbers.

How to cite

top

Sergio Falcon. "The k-Fibonacci matrix and the Pascal matrix." Open Mathematics 9.6 (2011): 1403-1410. <http://eudml.org/doc/269217>.

@article{SergioFalcon2011,
abstract = {We define the k-Fibonacci matrix as an extension of the classical Fibonacci matrix and relationed with the k-Fibonacci numbers. Then we give two factorizations of the Pascal matrix involving the k-Fibonacci matrix and two new matrices, L and R. As a consequence we find some combinatorial formulas involving the k-Fibonacci numbers.},
author = {Sergio Falcon},
journal = {Open Mathematics},
keywords = {Pascal matrix; k-Fibonacci numbers; Factorization of a matrix; -Fibonacci matrices; -Fibonacci numbers; factorization},
language = {eng},
number = {6},
pages = {1403-1410},
title = {The k-Fibonacci matrix and the Pascal matrix},
url = {http://eudml.org/doc/269217},
volume = {9},
year = {2011},
}

TY - JOUR
AU - Sergio Falcon
TI - The k-Fibonacci matrix and the Pascal matrix
JO - Open Mathematics
PY - 2011
VL - 9
IS - 6
SP - 1403
EP - 1410
AB - We define the k-Fibonacci matrix as an extension of the classical Fibonacci matrix and relationed with the k-Fibonacci numbers. Then we give two factorizations of the Pascal matrix involving the k-Fibonacci matrix and two new matrices, L and R. As a consequence we find some combinatorial formulas involving the k-Fibonacci numbers.
LA - eng
KW - Pascal matrix; k-Fibonacci numbers; Factorization of a matrix; -Fibonacci matrices; -Fibonacci numbers; factorization
UR - http://eudml.org/doc/269217
ER -

References

top
  1. [1] Call G.S., Velleman D.J., Pascal’s matrices, Amer. Math. Monthly, 1993, 100(4), 372–376 http://dx.doi.org/10.2307/2324960 Zbl0788.05011
  2. [2] Falcón S., On sequences of products of two k-Fibonacci numbers, Int. J. Contemp. Math. Sci. (in press) Zbl06285596
  3. [3] Falcón S., Some tridiagonal matrices and the k-Fibonacci numbers. Appl. Math. Comput. (in press) Zbl06285596
  4. [4] Falcón S., Plaza Á., On the Fibonacci k-numbers, Chaos Solitons Fractals, 2007, 32(5), 1615–1624 http://dx.doi.org/10.1016/j.chaos.2006.09.022 Zbl1158.11306
  5. [5] Falcón S., Plaza Á., The k-Fibonacci sequence and the Pascal 2-triangle, Chaos Solitons Fractals, 2007, 33(1), 38–49 http://dx.doi.org/10.1016/j.chaos.2006.10.022 Zbl1152.11308
  6. [6] Lee G.-Y., Kim J.-S., The linear algebra of the k-Fibonacci matrix, Linear Algebra Appl., 2003, 373, 75–87 http://dx.doi.org/10.1016/S0024-3795(02)00596-7 Zbl1059.11018
  7. [7] Lee G.-Y., Kim J.-S., Cho S.-H., Some combinatorial identities via Fibonacci numbers, Discrete Appl. Math., 2003, 130(3), 527–534 http://dx.doi.org/10.1016/S0166-218X(03)00331-7 Zbl1020.05016
  8. [8] Lee G.-Y., Kim J.-S., Lee S.-G., Factorizations and eigenvalues of Fibonacci and symmetric Fibonacci matrices, Fibonacci Quart., 2002, 40(3), 203–211 Zbl1079.11012
  9. [9] Lee G.-Y., Lee S.-G., Shin H.-G., On the k-generalized Fibonacci matrix Q k, Linear Algebra Appl., 1997, 251, 73–88 http://dx.doi.org/10.1016/0024-3795(95)00553-6 Zbl0917.05046
  10. [10] Peart P., Woodson L., Triple factorization of some Riordan matrices, Fibonacci Quart., 1993, 31(2), 121–128 Zbl0778.05005
  11. [11] Zhang Z., The linear algebra of the generalized Pascal matrix, Linear Algebra Appl., 1997, 250, 51–60 http://dx.doi.org/10.1016/0024-3795(95)00452-1 
  12. [12] Zhang Z., Wang X., A factorization of the symmetric Pascal matrix involving the Fibonacci matrix, Discrete Appl. Math., 2007, 155(17), 2371–2376 http://dx.doi.org/10.1016/j.dam.2007.06.024 Zbl1125.05023

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.