Quasi-minimal rotational surfaces in pseudo-Euclidean four-dimensional space
Georgi Ganchev; Velichka Milousheva
Open Mathematics (2014)
- Volume: 12, Issue: 10, page 1586-1601
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topGeorgi Ganchev, and Velichka Milousheva. "Quasi-minimal rotational surfaces in pseudo-Euclidean four-dimensional space." Open Mathematics 12.10 (2014): 1586-1601. <http://eudml.org/doc/269222>.
@article{GeorgiGanchev2014,
abstract = {In the four-dimensional pseudo-Euclidean space with neutral metric there are three types of rotational surfaces with two-dimensional axis - rotational surfaces of elliptic, hyperbolic or parabolic type. A surface whose mean curvature vector field is lightlike is said to be quasi-minimal. In this paper we classify all rotational quasi-minimal surfaces of elliptic, hyperbolic and parabolic type, respectively.},
author = {Georgi Ganchev, Velichka Milousheva},
journal = {Open Mathematics},
keywords = {Pseudo-Euclidean 4-space with neutral metric; Quasi-minimal surfaces; Lightlike mean curvature vector; Rotational surfaces of elliptic; hyperbolic or parabolic type; pseudo-Euclidean 4-space with neutral metric; quasi-minimal surfaces; light-like mean curvature vector; rotational surfaces of elliptic},
language = {eng},
number = {10},
pages = {1586-1601},
title = {Quasi-minimal rotational surfaces in pseudo-Euclidean four-dimensional space},
url = {http://eudml.org/doc/269222},
volume = {12},
year = {2014},
}
TY - JOUR
AU - Georgi Ganchev
AU - Velichka Milousheva
TI - Quasi-minimal rotational surfaces in pseudo-Euclidean four-dimensional space
JO - Open Mathematics
PY - 2014
VL - 12
IS - 10
SP - 1586
EP - 1601
AB - In the four-dimensional pseudo-Euclidean space with neutral metric there are three types of rotational surfaces with two-dimensional axis - rotational surfaces of elliptic, hyperbolic or parabolic type. A surface whose mean curvature vector field is lightlike is said to be quasi-minimal. In this paper we classify all rotational quasi-minimal surfaces of elliptic, hyperbolic and parabolic type, respectively.
LA - eng
KW - Pseudo-Euclidean 4-space with neutral metric; Quasi-minimal surfaces; Lightlike mean curvature vector; Rotational surfaces of elliptic; hyperbolic or parabolic type; pseudo-Euclidean 4-space with neutral metric; quasi-minimal surfaces; light-like mean curvature vector; rotational surfaces of elliptic
UR - http://eudml.org/doc/269222
ER -
References
top- [1] Chen, B.-Y., Classification of marginally trapped Lorentzian flat surfaces in and its application to biharmonic surfaces, J. Math. Anal. Appl., 2008, 340(2), 861–875. http://dx.doi.org/10.1016/j.jmaa.2007.09.021 Zbl1160.53007
- [2] Chen, B.-Y., Classification of marginally trapped surfaces of constant curvature in Lorentzian complex plane, Hokkaido Math. J., 2009, 38(2), 361–408. http://dx.doi.org/10.14492/hokmj/1248190082 Zbl1187.53056
- [3] Chen, B.-Y., Black holes, marginally trapped surfaces and quasi-minimal surfaces. Tamkang J. Math., 2009, 40(4), 313–341. Zbl1194.53060
- [4] Chen, B.-Y., Pseudo-Riemannian geometry, δ-invariants and applications, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2011. http://dx.doi.org/10.1142/8003
- [5] Chen, B.-Y., Dillen, F., Classification of marginally trapped Lagrangian surfaces in Lorentzian complex space forms, J. Math. Phys., 2007, 48(1), 013509, 23 pp.; Erratum, J. Math. Phys., 2008, 49(5), 059901, 1p. http://dx.doi.org/10.1063/1.2424553 Zbl1152.81370
- [6] Chen, B.-Y., Garay, O., Classification of quasi-minimal surfaces with parallel mean curvature vector in pseudo-Euclidean 4-space , Result. Math., 2009, 55(1–2), 23–38. http://dx.doi.org/10.1007/s00025-009-0386-9 Zbl1178.53049
- [7] Chen, B.-Y., Mihai, I., Classification of quasi-minimal slant surfaces in Lorentzian complex space forms, Acta Math. Hungar., 2009, 122(4), 307–328. http://dx.doi.org/10.1007/s10474-008-8033-6 Zbl1199.53167
- [8] Chen, B.-Y., Van der Veken, J., Marginally trapped surfaces in Lorentzian space with positive relative nullity, Class. Quantum Grav., 2007, 24(3), 551–563. http://dx.doi.org/10.1088/0264-9381/24/3/003 Zbl1141.53065
- [9] Chen, B.-Y., Van der Veken, J., Spatial and Lorentzian surfaces in Robertson-Walker space times, J. Math. Phys., 2007, 48(7), 073509, 12 pp. http://dx.doi.org/10.1063/1.2748616 Zbl1144.81324
- [10] Chen, B.-Y., Van der Veken, J., Classification of marginally trapped surfaces with parallel mean curvature vector in Lorenzian space forms, Houston J. Math., 2010, 36(2), 421–449. Zbl1213.53026
- [11] Chen, B.-Y., Yang, D., Addendum to “Classification of marginally trapped Lorentzian flat surfaces in and its application to biharmonic surfaces,” J. Math. Anal. Appl., 2010, 361(1), 280–282. http://dx.doi.org/10.1016/j.jmaa.2009.08.061 Zbl1179.53021
- [12] Ganchev, G., Milousheva, V., Chen rotational surfaces of hyperbolic or elliptic type in the four-dimensional Minkowski space, C. R. Acad. Bulgare Sci., 2011, 64(5), 641–652. Zbl1289.53014
- [13] Ganchev, G., Milousheva, V., An invariant theory of marginally trapped surfaces in the four-dimensional Minkowski space, J. Math. Phys., 2012, 53(3), 033705, 15 pp. http://dx.doi.org/10.1063/1.3693976 Zbl1274.83073
- [14] Haesen, S., Ortega, M., Boost invariant marginally trapped surfaces in Minkowski 4-space, Classical Quantum Gravity, 2007, 24(22), 5441–5452. http://dx.doi.org/10.1088/0264-9381/24/22/009 Zbl1165.83334
- [15] Haesen, S., Ortega, M., Marginally trapped surfaces in Minkowski 4-space invariant under a rotational subgroup of the Lorentz group, Gen. Relativity Gravitation, 2009, 41(8), 1819–1834. http://dx.doi.org/10.1007/s10714-008-0754-x Zbl1177.83017
- [16] Haesen, S., Ortega, M., Screw invariant marginally trapped surfaces in Minkowski 4-space, J. Math. Anal. Appl., 2009, 355(2), 639–648. http://dx.doi.org/10.1016/j.jmaa.2009.02.019 Zbl1166.83006
- [17] Liu H., Liu G., Hyperbolic rotation surfaces of constant mean curvature in 3-de Sitter space, Bull. Belg. Math. Soc. Simon Stevin, 2000, 7(3), 455–466. Zbl0973.53047
- [18] Liu H., Liu G., Weingarten rotation surfaces in 3-dimensional de Sitter space, J. Geom., 2004, 79(1–2), 156–168. http://dx.doi.org/10.1007/s00022-003-1567-4 Zbl1062.53060
- [19] Penrose, R. Gravitational collapse and space-time singularities, Phys. Rev. Lett., 1965, 14, 57–59. http://dx.doi.org/10.1103/PhysRevLett.14.57 Zbl0125.21206
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.