Implications between approximate convexity properties and approximate Hermite-Hadamard inequalities
Open Mathematics (2012)
- Volume: 10, Issue: 3, page 1017-1041
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topJudit Makó, and Zsolt Páles. "Implications between approximate convexity properties and approximate Hermite-Hadamard inequalities." Open Mathematics 10.3 (2012): 1017-1041. <http://eudml.org/doc/269223>.
@article{JuditMakó2012,
abstract = {The connection between the functional inequalities \[f\left( \{\frac\{\{x + y\}\}\{2\}\} \right) \leqslant \frac\{\{f\left( x \right) + f\left( y \right)\}\}\{2\} + \alpha \_J \left( \{x - y\} \right), x,y \in D,\]
and \[\int \_0^1 \{f\left( \{tx + \left( \{1 - t\} \right)y\} \right)\rho \left( t \right)dt \leqslant \lambda f\left( x \right) + \left( \{1 - \lambda \} \right)f\left( y \right) + \alpha \_\{\rm H\} \left( \{x - y\} \right),\} x,y \in D,\]
is investigated, where D is a convex subset of a linear space, f: D → ℝ, α H;α J: D-D → ℝ are even functions, λ ∈ [0; 1], and ρ: [0; 1] →ℝ+ is an integrable nonnegative function with ∫01 ρ(t) dt = 1.},
author = {Judit Makó, Zsolt Páles},
journal = {Open Mathematics},
keywords = {Convexity; Approximate convexity; Lower and upper Hermite-Hadamard inequalities; convexity; approximate convexity; lower and upper Hermite–Hadamard inequalities},
language = {eng},
number = {3},
pages = {1017-1041},
title = {Implications between approximate convexity properties and approximate Hermite-Hadamard inequalities},
url = {http://eudml.org/doc/269223},
volume = {10},
year = {2012},
}
TY - JOUR
AU - Judit Makó
AU - Zsolt Páles
TI - Implications between approximate convexity properties and approximate Hermite-Hadamard inequalities
JO - Open Mathematics
PY - 2012
VL - 10
IS - 3
SP - 1017
EP - 1041
AB - The connection between the functional inequalities \[f\left( {\frac{{x + y}}{2}} \right) \leqslant \frac{{f\left( x \right) + f\left( y \right)}}{2} + \alpha _J \left( {x - y} \right), x,y \in D,\]
and \[\int _0^1 {f\left( {tx + \left( {1 - t} \right)y} \right)\rho \left( t \right)dt \leqslant \lambda f\left( x \right) + \left( {1 - \lambda } \right)f\left( y \right) + \alpha _{\rm H} \left( {x - y} \right),} x,y \in D,\]
is investigated, where D is a convex subset of a linear space, f: D → ℝ, α H;α J: D-D → ℝ are even functions, λ ∈ [0; 1], and ρ: [0; 1] →ℝ+ is an integrable nonnegative function with ∫01 ρ(t) dt = 1.
LA - eng
KW - Convexity; Approximate convexity; Lower and upper Hermite-Hadamard inequalities; convexity; approximate convexity; lower and upper Hermite–Hadamard inequalities
UR - http://eudml.org/doc/269223
ER -
References
top- [1] Bernstein F., Doetsch G., Zur Theorie der konvexen Funktionen, Math. Ann., 1915, 76(4), 514–526 http://dx.doi.org/10.1007/BF01458222
- [2] Dragomir S.S., Pearce C.E.M., Selected Topics on Hermite-Hadamard Inequalities and Applications, RGMIA Monographs, Victoria University, 2000, preprint available at http://ajmaa.org/RGMIA/papers/monographs/Master.pdf
- [3] Hadamard J., Étude sur les propriétés des fonctions entières et en particulier d’une fonction considéréé par Riemann, J. Math. Pures Appl., 1893, 58, 171–215
- [4] Hyers D.H., Ulam S.M., Approximately convex functions, Proc. Amer. Math. Soc., 1952, 3, 821–828 http://dx.doi.org/10.1090/S0002-9939-1952-0049962-5 Zbl0047.29505
- [5] Házy A., On approximate t-convexity, Math. Inequal. Appl., 2005, 8(3), 389–402 Zbl1070.26010
- [6] Házy A., On stability of t-convexity, In: Proceedings of MicroCAD 2007 International Scientific Conference, G, Miskolci Egyetem, Miskolc, 2007, 23–28 Zbl1130.26006
- [7] Házy A., Páles Zs., On approximately midconvex functions, Bull. London Math. Soc., 2004, 36(3), 339–350 http://dx.doi.org/10.1112/S0024609303002807 Zbl1052.26014
- [8] Házy A., Páles Zs., On approximately t-convex functions, Publ. Math. Debrecen, 2005, 66(3–4), 489–501 Zbl1082.26007
- [9] Házy A., Páles Zs., On a certain stability of the Hermite-Hadamard inequality, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 2009, 465, 571–583 http://dx.doi.org/10.1098/rspa.2008.0291
- [10] Kuczma M., An Introduction to the Theory of Functional Equations and Inequalities, Prace Naukowe Uniwersytetu Slaskiego w Katowicach, 489, Panstwowe Wydawnictwo Naukowe, Warsaw, 1985
- [11] Makó J., Páles Zs., Approximate convexity of Takagi type functions, J. Math. Anal. Appl., 2010, 369(2), 545–554 http://dx.doi.org/10.1016/j.jmaa.2010.03.063 Zbl1201.26003
- [12] Makó J., Páles Zs., On approximately convex Takagi type functions, Proc. Amer. Math. Soc. (in press) Zbl1273.39022
- [13] Mitrinovic D.S., Lackovic I.B., Hermite and convexity, Aequationes Math., 1985, 28, 229–232 http://dx.doi.org/10.1007/BF02189414
- [14] Niculescu C.P., Persson L.-E., Old and new on the Hermite-Hadamard inequality, Real Anal. Exchange, 2003/04, 29(2), 663–685
- [15] Niculescu C.P., Persson L.-E., Convex Functions and Their Applications, CMS Books Math./Ouvrages Math. SMC, 23, Springer, New York, 2006 Zbl1100.26002
- [16] Nikodem K., Riedel T., Sahoo P.K., The stability problem of the Hermite-Hadamard inequality, Math. Inequal. Appl., 2007, 10(2), 359–363 Zbl1117.39019
- [17] Tabor J., Tabor J., Generalized approximate midconvexity, Control Cybernet., 2009, 38(3), 655–669 Zbl1301.52002
- [18] Tabor J., Tabor J., Takagi functions and approximate midconvexity, J. Math. Anal. Appl., 2009, 356(2), 729–737 http://dx.doi.org/10.1016/j.jmaa.2009.03.053 Zbl1188.26008
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.