Implications between approximate convexity properties and approximate Hermite-Hadamard inequalities

Judit Makó; Zsolt Páles

Open Mathematics (2012)

  • Volume: 10, Issue: 3, page 1017-1041
  • ISSN: 2391-5455

Abstract

top
The connection between the functional inequalities f x + y 2 f x + f y 2 + α J x - y , x , y D , and 0 1 f t x + 1 - t y ρ t d t λ f x + 1 - λ f y + α H x - y , x , y D , is investigated, where D is a convex subset of a linear space, f: D → ℝ, α H;α J: D-D → ℝ are even functions, λ ∈ [0; 1], and ρ: [0; 1] →ℝ+ is an integrable nonnegative function with ∫01 ρ(t) dt = 1.

How to cite

top

Judit Makó, and Zsolt Páles. "Implications between approximate convexity properties and approximate Hermite-Hadamard inequalities." Open Mathematics 10.3 (2012): 1017-1041. <http://eudml.org/doc/269223>.

@article{JuditMakó2012,
abstract = {The connection between the functional inequalities \[f\left( \{\frac\{\{x + y\}\}\{2\}\} \right) \leqslant \frac\{\{f\left( x \right) + f\left( y \right)\}\}\{2\} + \alpha \_J \left( \{x - y\} \right), x,y \in D,\] and \[\int \_0^1 \{f\left( \{tx + \left( \{1 - t\} \right)y\} \right)\rho \left( t \right)dt \leqslant \lambda f\left( x \right) + \left( \{1 - \lambda \} \right)f\left( y \right) + \alpha \_\{\rm H\} \left( \{x - y\} \right),\} x,y \in D,\] is investigated, where D is a convex subset of a linear space, f: D → ℝ, α H;α J: D-D → ℝ are even functions, λ ∈ [0; 1], and ρ: [0; 1] →ℝ+ is an integrable nonnegative function with ∫01 ρ(t) dt = 1.},
author = {Judit Makó, Zsolt Páles},
journal = {Open Mathematics},
keywords = {Convexity; Approximate convexity; Lower and upper Hermite-Hadamard inequalities; convexity; approximate convexity; lower and upper Hermite–Hadamard inequalities},
language = {eng},
number = {3},
pages = {1017-1041},
title = {Implications between approximate convexity properties and approximate Hermite-Hadamard inequalities},
url = {http://eudml.org/doc/269223},
volume = {10},
year = {2012},
}

TY - JOUR
AU - Judit Makó
AU - Zsolt Páles
TI - Implications between approximate convexity properties and approximate Hermite-Hadamard inequalities
JO - Open Mathematics
PY - 2012
VL - 10
IS - 3
SP - 1017
EP - 1041
AB - The connection between the functional inequalities \[f\left( {\frac{{x + y}}{2}} \right) \leqslant \frac{{f\left( x \right) + f\left( y \right)}}{2} + \alpha _J \left( {x - y} \right), x,y \in D,\] and \[\int _0^1 {f\left( {tx + \left( {1 - t} \right)y} \right)\rho \left( t \right)dt \leqslant \lambda f\left( x \right) + \left( {1 - \lambda } \right)f\left( y \right) + \alpha _{\rm H} \left( {x - y} \right),} x,y \in D,\] is investigated, where D is a convex subset of a linear space, f: D → ℝ, α H;α J: D-D → ℝ are even functions, λ ∈ [0; 1], and ρ: [0; 1] →ℝ+ is an integrable nonnegative function with ∫01 ρ(t) dt = 1.
LA - eng
KW - Convexity; Approximate convexity; Lower and upper Hermite-Hadamard inequalities; convexity; approximate convexity; lower and upper Hermite–Hadamard inequalities
UR - http://eudml.org/doc/269223
ER -

References

top
  1. [1] Bernstein F., Doetsch G., Zur Theorie der konvexen Funktionen, Math. Ann., 1915, 76(4), 514–526 http://dx.doi.org/10.1007/BF01458222 
  2. [2] Dragomir S.S., Pearce C.E.M., Selected Topics on Hermite-Hadamard Inequalities and Applications, RGMIA Monographs, Victoria University, 2000, preprint available at http://ajmaa.org/RGMIA/papers/monographs/Master.pdf 
  3. [3] Hadamard J., Étude sur les propriétés des fonctions entières et en particulier d’une fonction considéréé par Riemann, J. Math. Pures Appl., 1893, 58, 171–215 
  4. [4] Hyers D.H., Ulam S.M., Approximately convex functions, Proc. Amer. Math. Soc., 1952, 3, 821–828 http://dx.doi.org/10.1090/S0002-9939-1952-0049962-5 Zbl0047.29505
  5. [5] Házy A., On approximate t-convexity, Math. Inequal. Appl., 2005, 8(3), 389–402 Zbl1070.26010
  6. [6] Házy A., On stability of t-convexity, In: Proceedings of MicroCAD 2007 International Scientific Conference, G, Miskolci Egyetem, Miskolc, 2007, 23–28 Zbl1130.26006
  7. [7] Házy A., Páles Zs., On approximately midconvex functions, Bull. London Math. Soc., 2004, 36(3), 339–350 http://dx.doi.org/10.1112/S0024609303002807 Zbl1052.26014
  8. [8] Házy A., Páles Zs., On approximately t-convex functions, Publ. Math. Debrecen, 2005, 66(3–4), 489–501 Zbl1082.26007
  9. [9] Házy A., Páles Zs., On a certain stability of the Hermite-Hadamard inequality, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 2009, 465, 571–583 http://dx.doi.org/10.1098/rspa.2008.0291 
  10. [10] Kuczma M., An Introduction to the Theory of Functional Equations and Inequalities, Prace Naukowe Uniwersytetu Slaskiego w Katowicach, 489, Panstwowe Wydawnictwo Naukowe, Warsaw, 1985 
  11. [11] Makó J., Páles Zs., Approximate convexity of Takagi type functions, J. Math. Anal. Appl., 2010, 369(2), 545–554 http://dx.doi.org/10.1016/j.jmaa.2010.03.063 Zbl1201.26003
  12. [12] Makó J., Páles Zs., On approximately convex Takagi type functions, Proc. Amer. Math. Soc. (in press) Zbl1273.39022
  13. [13] Mitrinovic D.S., Lackovic I.B., Hermite and convexity, Aequationes Math., 1985, 28, 229–232 http://dx.doi.org/10.1007/BF02189414 
  14. [14] Niculescu C.P., Persson L.-E., Old and new on the Hermite-Hadamard inequality, Real Anal. Exchange, 2003/04, 29(2), 663–685 
  15. [15] Niculescu C.P., Persson L.-E., Convex Functions and Their Applications, CMS Books Math./Ouvrages Math. SMC, 23, Springer, New York, 2006 Zbl1100.26002
  16. [16] Nikodem K., Riedel T., Sahoo P.K., The stability problem of the Hermite-Hadamard inequality, Math. Inequal. Appl., 2007, 10(2), 359–363 Zbl1117.39019
  17. [17] Tabor J., Tabor J., Generalized approximate midconvexity, Control Cybernet., 2009, 38(3), 655–669 Zbl1301.52002
  18. [18] Tabor J., Tabor J., Takagi functions and approximate midconvexity, J. Math. Anal. Appl., 2009, 356(2), 729–737 http://dx.doi.org/10.1016/j.jmaa.2009.03.053 Zbl1188.26008

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.