The discrete maximum principle for Galerkin solutions of elliptic problems
Open Mathematics (2012)
- Volume: 10, Issue: 1, page 25-43
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] Bramble J.H., Hubbard B.E., New monotone type approximations for elliptic problems, Math. Comp., 1964, 18, 349–367 http://dx.doi.org/10.1090/S0025-5718-1964-0165702-X Zbl0124.33006
- [2] Bramble J.H., Hubbard B.E., On a finite difference analogue of an elliptic boundary problem which is neither diagonally dominant nor of non-negative type, Journal of Mathematics and Physics, 1964, 43, 117–132 Zbl0126.32305
- [3] Brandts J.H., Korotov S., Křížek M., Dissection of the path-simplex in ℝn into n path-subsimplices, Linear Algebra Appl., 2007, 421(2–3), 382–393 http://dx.doi.org/10.1016/j.laa.2006.10.010 Zbl1112.51006
- [4] Brandts J.H., Korotov S., Křížek M., Simplicial finite elements in higher dimensions, Appl. Math., 2007, 52(3), 251–265 http://dx.doi.org/10.1007/s10492-007-0013-6 Zbl1164.65493
- [5] Brandts J.H., Korotov S., Křížek M., The discrete maximum principle for linear simplicial finite element approximations of a reaction-diffusion problem, Linear Algebra Appl., 2008, 429(10), 2344–2357 http://dx.doi.org/10.1016/j.laa.2008.06.011 Zbl1154.65086
- [6] Brandts J., Korotov S., Křížek M., Šolc J., On nonobtuse simplicial partitions, SIAM Rev., 2009, 51(2), 317–335 http://dx.doi.org/10.1137/060669073 Zbl1172.51012
- [7] Ciarlet P.G., Discrete variational Green’s function. I, Aequationes Math., 1970, 4(1–2), 74–82 http://dx.doi.org/10.1007/BF01817748 Zbl0194.12703
- [8] Ciarlet P.G., Discrete maximum principle for finite-difference operators, Aequationes Math., 1970, 4(3), 338–352 http://dx.doi.org/10.1007/BF01844166 Zbl0198.14601
- [9] Ciarlet P.G., The Finite Element Method for Elliptic Problems, Stud. Math. Appl., 4, North-Holland, Amsterdam-New York-Oxford, 1978 Zbl0383.65058
- [10] Ciarlet P.G., Raviart P.-A., Maximum principle and uniform convergence for the finite element method, Comput. Methods Appl. Mech. Engrg., 1973, 2(1), 17–31 http://dx.doi.org/10.1016/0045-7825(73)90019-4 Zbl0251.65069
- [11] Ciarlet P.G., Varga R.S., Discrete variational Green’s function. II. One dimensional problem, Numer. Math., 1970, 16(2), 115–128 http://dx.doi.org/10.1007/BF02308864 Zbl0245.34012
- [12] Drăgănescu A., Dupont T.F., Scott L.R., Failure of the discrete maximum principle for an elliptic finite element problem, Math. Comp., 2005, 74(249), 1–23 http://dx.doi.org/10.1090/S0025-5718-04-01651-5 Zbl1074.65129
- [13] Duffy D.G., Green’s Functions with Applications, Stud. Adv. Math., Chapman&Hall/CRC, Boca Raton, 2001 Zbl0983.35003
- [14] Eppstein D., Sullivan J.M., Üngör A., Tiling space and slabs with acute tetrahedra, Comput. Geom., 2004, 27(3), 237–255 http://dx.doi.org/10.1016/j.comgeo.2003.11.003 Zbl1054.65020
- [15] Faragó I., Horváth R., Discrete maximum principle and adequate discretizations of linear parabolic problems, SIAM J. Sci. Comput., 2006, 28(6), 2313–2336 http://dx.doi.org/10.1137/050627241 Zbl1130.65086
- [16] Faragó I., Horváth R., A review of reliable numerical models for three-dimensional linear parabolic problems, Internat. J. Numer. Methods Engrg., 2007, 70(1), 25–45 http://dx.doi.org/10.1002/nme.1863 Zbl1194.80119
- [17] Faragó I., Horváth R., Korotov S., Discrete maximum principle for linear parabolic problems solved on hybrid meshes, Appl. Numer. Math., 2005, 53(2–4), 249–264 http://dx.doi.org/10.1016/j.apnum.2004.09.001 Zbl1070.65094
- [18] Faragó I., Korotov S., Szabó T., On modifications of continuous and discrete maximum principles for reaction-diffusion problems, Adv. Appl. Math. Mech., 2011, 3(1), 109–120 Zbl1262.35124
- [19] Fiedler M., Special Matrices and their Applications in Numerical Mathematics, Martinus Nijhoff, Dordrecht, 1986 http://dx.doi.org/10.1007/978-94-009-4335-3
- [20] Fujii H., Some remarks on finite element analysis of time-dependent field problems, In: Theory and Practice in Finite Element Structural Analysis, Univ. Tokyo Press, Tokyo, 1973, 91–106
- [21] Gilbarg D., Trudinger N.S., Elliptic Partial Differential Equations of Second Order, Grundlehren Math. Wiss., 224, Springer-Verlag, Berlin-New York, 1977 Zbl0361.35003
- [22] Glowinski R., Numerical Methods for Nonlinear Variational Problems, Springer Ser. Comput. Phys., Springer, New York, 1984 Zbl0536.65054
- [23] Ikeda T., Maximum Principle in Finite Element Models for Convection-Diffusion Phenomena, Lecture Notes Numer. Appl. Anal., 4, Kinokuniya Book Store, Tokyo, 1983
- [24] Karátson J., Korotov S., Discrete maximum principles for finite element solutions of nonlinear elliptic problems with mixed boundary conditions, Numer. Math., 2005, 99(4), 669–698 http://dx.doi.org/10.1007/s00211-004-0559-0 Zbl1067.65127
- [25] Knobloch P., Tobiska L., On the stability of finite-element discretizations of convection-diffusion-reaction equations, IMA J. Numer. Anal., 2011, 31(1), 147–164 http://dx.doi.org/10.1093/imanum/drp020 Zbl1211.65147
- [26] Křížek M., There is no face-to-face partition of R5 into acute simplices, Discrete Comput. Geom., 2006, 36(2), 381–390 http://dx.doi.org/10.1007/s00454-006-1244-0 Zbl1103.52008
- [27] Křížek M., Liu L., On a comparison principle for a quasilinear elliptic boundary value problem of a nonmonotone type, Appl. Math. (Warsaw), 1996, 24(1), 97–107 Zbl0858.35008
- [28] Křížek M., Qun L., On diagonal dominance of stiffness matrices in 3D, East-West J. Numer. Math., 1995, 3(1), 59–69 Zbl0824.65112
- [29] Kuzmin D., Shashkov M.J., Svyatskiy D., A constrained finite element method satisfying the discrete maximum principle for anisotropic diffusion problems, J. Comput. Phys., 2009, 228(9), 3448–3463 http://dx.doi.org/10.1016/j.jcp.2009.01.031 Zbl1163.65085
- [30] Nečas J., Les Méthodes Directes en Théorie des Équations Elliptiques, Masson et Cie, Éditeurs, Paris, 1967
- [31] Protter M.H., Weinberger H.F., Maximum Principles in Differential Equations, Prentice-Hall, Englewood Cliffs, 1967 Zbl0153.13602
- [32] Roos H.-G., Stynes M., Tobiska L., Robust Numerical Methods for Singularly Perturbed Differential Equations, 2nd ed., Springer Ser. Comput. Math., 24, Springer, Berlin, 2008 Zbl1155.65087
- [33] Schatz A.H., A weak discrete maximum principle and stability of the finite element method in L ∞ on plane polygonal domains. I, Math. Comp., 1980, 34(149), 77-91
- [34] Šolín P., Segeth K., Doležel I., Higher-Order Finite Element Methods, Stud. Adv. Math., Chapman&Hall/CRC, Boca Raton, 2004 Zbl1032.65132
- [35] Stakgold I., Green’s Functions and Boundary Value Problems, 2nd ed., Pure Appl. Math. (N.Y.), John Wiley & Sons, New York, 1998
- [36] Szabó B., Babuška I., Finite Element Analysis, Wiley-Intersci. Publ., John Wiley & Sons, New York, 1991 Zbl0792.73003
- [37] VanderZee E., Hirani A.N., Zharnitsky V., Guoy D., A dihedral acute triangulation of the cube, Comput. Geom., 2010, 43(5), 445–452 Zbl1185.65040
- [38] Vanselow R., About Delaunay triangulations and discrete maximum principles for the linear conforming FEM applied to the Poisson equation, Appl. Math., 2001, 46(1), 13–28 http://dx.doi.org/10.1023/A:1013775420323 Zbl1066.65132
- [39] Varga R.S., Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, 1962
- [40] Varga R.S., On a discrete maximum principle, SIAM J. Numer. Anal., 1966, 3, 355–359 http://dx.doi.org/10.1137/0703029 Zbl0143.17603
- [41] Vejchodský T., Angle conditions for discrete maximum principles in higher-order FEM, In: Numerical Mathematics and Advanced Applications, ENUMATH 2009, Uppsala, June 29–July 3, 2009, Springer, Berlin, 2010, 901–909 Zbl1216.65163
- [42] Vejchodský T., Higher-order discrete maximum principle for 1D diffusion-reaction problems, Appl. Numer. Math., 2010, 60(4), 486–500 http://dx.doi.org/10.1016/j.apnum.2009.10.009 Zbl1230.65088
- [43] Vejchodský T., Šolín P., Discrete Green’s function and maximum principles, In: Programs and Algorithms of Numerical Mathematics, 13, Institute of Mathematics, Academy of Sciences, Czech Republic, 2006, 247–252, available at http://www.math.cas.cz/~panm13
- [44] Vejchodský T., Šolín P., Discrete maximum principle for a 1D problem with piecewise-constant coefficients solved by hp-FEM, J. Numer. Math., 2007, 15(3), 233–243 http://dx.doi.org/10.1515/jnma.2007.011 Zbl1172.65045
- [45] Vejchodský T., Šolín P., Discrete maximum principle for higher-order finite elements in 1D, Math. Comp., 2007, 76(260), 1833–1846 http://dx.doi.org/10.1090/S0025-5718-07-02022-4 Zbl1125.65108
- [46] Vejchodský T., Šolín P., Discrete maximum principle for Poisson equation with mixed boundary conditions solved by hp-FEM, Adv. Appl. Math. Mech., 2009, 1(2), 201–214 Zbl1262.65181
- [47] Xu J., Zikatanov L., A monotone finite element scheme for convection-diffusion equations, Math. Comp., 1999, 68(228), 1429–1446 http://dx.doi.org/10.1090/S0025-5718-99-01148-5 Zbl0931.65111