Simplicial finite elements in higher dimensions
Jan Brandts; Sergey Korotov; Michal Křížek
Applications of Mathematics (2007)
- Volume: 52, Issue: 3, page 251-265
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topReferences
top- 10.1023/A:1024058625449, Numer. Algorithms 32 (2003), 185–191. (2003) MR1989366DOI10.1023/A:1024058625449
- 10.1002/1099-1506(200104/05)8:3<191::AID-NLA229>3.0.CO;2-7, Numer. Linear Algebra Appl. 8 (2001), 191–205. (2001) MR1817796DOI10.1002/1099-1506(200104/05)8:3<191::AID-NLA229>3.0.CO;2-7
- 10.1017/S0962492906210018, Acta Numer. 15 (2006), 1–135. (2006) MR2269741DOI10.1017/S0962492906210018
- On multigrid methods of the two-level type, In: Multigrid Methods. Lecture Notes in Mathematics, Vol. 960, W. Hackbusch, U. Trotenberg (eds.), Springer-Verlag, Berlin, 1982, pp. 352–367. (1982) Zbl0505.65040MR0685778
- 10.1023/B:APOM.0000024520.06175.8b, Appl. Math. 49 (2004), 57–72. (2004) MR2032148DOI10.1023/B:APOM.0000024520.06175.8b
- 10.1002/nla.340, Numer. Linear Algebra Appl. 10 (2003), 619–637. (2003) MR2030627DOI10.1002/nla.340
- 10.1002/nla.350, Numer. Linear Algebra Appl. 11 (2004), 309–326. (2004) MR2057704DOI10.1002/nla.350
- Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics, 2nd edition, Cambridge University Press, Cambridge, 2001, pp. 309–326. (2001) MR1827293
- The strengthened Cauchy-Bunyakowski-Schwarz inequality for -simplicial linear finite elements, In: Springer Lecture Notes in Computer Science, Vol. 3401, Springer-Verlag, Berlin, 2005, pp. 203–210. (2005)
- Survey of discrete maximum principles for linear elliptic and parabolic problems, In: Proc. Conf. ECCOMAS 2004, P. Neittaanmäki et al. (eds.), Univ. of Jyväskylä, 2004, pp. 1–19. (2004)
- Dissection of the path-simplex in into path-subsimplices, Linear Algebra Appl. 421 (2007), 382–393. (2007) MR2294350
- 10.1093/imanum/23.3.489, IMA J. Numer. Anal. 23 (2003), 489–505. (2003) MR1987941DOI10.1093/imanum/23.3.489
- The Mathematical Theory of Finite Element Methods. Texts in Applied Mathematics 15, Springer-Verlag, New York, 1994. (1994) MR1278258
- The Finite Element Method for Elliptic Problems, North Holland, Amsterdam, 1978. (1978) Zbl0383.65058MR0520174
- Optimal points of stresses for tetrahedron linear element, Nat. Sci. J. Xiangtan Univ. 3 (1980), 16–24. (Chinese) (1980)
- COMSOL, Multiphysics Version 3.3 (2006), Sweden, http://www.femlab.com.
- 10.1016/0898-1221(89)90148-X, Comput. Math. Appl. 17 (1989), 59–71. (1989) Zbl0706.51019MR0994189DOI10.1016/0898-1221(89)90148-X
- FEMLAB version 2.2 (2002). Multiphysics in Matlab, for use with Matlab, COMSOL, Sweden, http://www.femlab.com.
- Some remarks on finite element analysis of time-dependent field problems, In: Theory Pract. Finite Elem. Struct. Anal, Univ. Tokyo Press, Tokyo, 1973, pp. 91–106. (1973) Zbl0373.65047
- 10.1002/num.1690100511, Numer. Methods Partial Differ. Equations 10 (1994), 651–666. (1994) Zbl0807.65112MR1290950DOI10.1002/num.1690100511
- 10.1007/s00211-004-0559-0, Numer. Math. 99 (2005), 669–698. (2005) MR2121074DOI10.1007/s00211-004-0559-0
- On the diagonal dominance of stiffness matrices in 3D, East-West J. Numer. Math. 3 (1995), 59–69. (1995) MR1331484
- 10.1007/BF00047538, Acta Appl. Math. 9 (1987), 175–198. (1987) MR0900263DOI10.1007/BF00047538
- Finite Element Methods: Superconvergence, Post-processing and A Posteriori Estimates. Proc. Conf. Univ. of Jyväskylä, 1996. Lecture Notes in Pure and Applied Mathematics, Vol. 196, M. Křížek, P. Neittaanmäki, and R. Stenberg (eds.), Marcel Dekker, New York, 1998. (1998) MR1602809
- 10.1007/BF01396415, Numer. Math. 35 (1980), 315–341. (1980) DOI10.1007/BF01396415
- 10.1007/BF01389668, Numer. Math. 50 (1986), 57–81. (1986) MR0864305DOI10.1007/BF01389668
- Study of the rate of convergence of variational difference schemes for second-order elliptic equations in a two-dimensional field with a smooth boundary, Zh. Vychisl. Mat. Mat. Fiz. 9 (1969), 1102–1120. (1969) MR0295599
- On the strong maximum principle for some piecewise linear finite element approximate problems of non-positive type, J. Fac. Sci., Univ. Tokyo, Sect. IA Math. 29 (1982), 473–491. (1982) Zbl0488.65052MR0672072
- 10.1137/S0036142903425082, SIAM J. Numer. Anal. 42 (2005), 2188–2217. (2005) Zbl1081.65112MR2139244DOI10.1137/S0036142903425082
- 10.2514/3.5067, AIAA J. 7 (1969), 178–180. (1969) DOI10.2514/3.5067