On locally graded barely transitive groups
Cansu Betin; Mahmut Kuzucuoğlu
Open Mathematics (2013)
- Volume: 11, Issue: 7, page 1188-1196
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topCansu Betin, and Mahmut Kuzucuoğlu. "On locally graded barely transitive groups." Open Mathematics 11.7 (2013): 1188-1196. <http://eudml.org/doc/269238>.
@article{CansuBetin2013,
abstract = {We show that a barely transitive group is totally imprimitive if and only if it is locally graded. Moreover, we obtain the description of a barely transitive group G for the case G has a cyclic subgroup 〈x〉 which intersects non-trivially with all subgroups and for the case a point stabilizer H of G has a subgroup H 1 of finite index in H satisfying the identity χ(H 1) = 1, where χ is a multi-linear commutator of weight w.},
author = {Cansu Betin, Mahmut Kuzucuoğlu},
journal = {Open Mathematics},
keywords = {Locally graded groups; Locally finite groups; Quasi-finite groups; Splitting automorphism; infinite permutation groups; barely transitive groups; locally graded groups; locally finite groups},
language = {eng},
number = {7},
pages = {1188-1196},
title = {On locally graded barely transitive groups},
url = {http://eudml.org/doc/269238},
volume = {11},
year = {2013},
}
TY - JOUR
AU - Cansu Betin
AU - Mahmut Kuzucuoğlu
TI - On locally graded barely transitive groups
JO - Open Mathematics
PY - 2013
VL - 11
IS - 7
SP - 1188
EP - 1196
AB - We show that a barely transitive group is totally imprimitive if and only if it is locally graded. Moreover, we obtain the description of a barely transitive group G for the case G has a cyclic subgroup 〈x〉 which intersects non-trivially with all subgroups and for the case a point stabilizer H of G has a subgroup H 1 of finite index in H satisfying the identity χ(H 1) = 1, where χ is a multi-linear commutator of weight w.
LA - eng
KW - Locally graded groups; Locally finite groups; Quasi-finite groups; Splitting automorphism; infinite permutation groups; barely transitive groups; locally graded groups; locally finite groups
UR - http://eudml.org/doc/269238
ER -
References
top- [1] Arikan A., On locally graded non-periodic barely transitive groups, Rend. Semin. Mat. Univ. Padova, 2007, 117, 141–146 Zbl1166.20001
- [2] Arikan A., Trabelsi N., On certain characterizations of barely transitive groups, Rend. Semin. Mat. Univ. Padova, 2010, 123, 203–210 [WoS] Zbl1202.20002
- [3] Belyaev V.V., Groups of Miller-Moreno type, Siberian Math. J., 1978, 19(3), 356–360 http://dx.doi.org/10.1007/BF01875284[Crossref] Zbl0409.20027
- [4] Belyaev V.V., Inert subgroups in infinite simple groups, Siberian Math. J., 1993, 34(4), 606–611 http://dx.doi.org/10.1007/BF00975160[Crossref] Zbl0831.20033
- [5] Belyaev V.V., Kuzucuoglu M., Locally finite barely transitive groups, Algebra Logic, 2003, 42(3), 147–152 http://dx.doi.org/10.1023/A:1023946008218[Crossref] Zbl1033.20001
- [6] Betin C., Kuzucuoğlu M., Description of barely transitive groups with soluble point stabilizer, Comm. Algebra, 2009, 37(6), 1901–1907 http://dx.doi.org/10.1080/00927870802210076[WoS][Crossref] Zbl1181.20002
- [7] Bruno B., Phillips R.E., On minimal conditions related to Miller-Moreno type groups, Rend. Sem. Mat. Univ. Padova, 1983, 69, 153–168 Zbl0522.20022
- [8] Bhattacharjee M., Macpherson D., Möller R.G., Neumann P.M., Notes on Infinite Permutation Groups, Texts Read. Math., 12, Lecture Notes in Math., 1698, Hindustan Book Agency/Springer, New Delhi/Berlin, 1997 Zbl0916.20001
- [9] Dixon J.D., Mortimer B., Permutation Groups, Grad. Texts in Math., 163, Springer, New York, 1996 http://dx.doi.org/10.1007/978-1-4612-0731-3[Crossref]
- [10] Dixon M.R., Evans M.J., Obraztsov V.N., Wiegold J., Groups that are covered by non-abelian simple groups, J. Algebra, 2000, 223(2), 511–526 http://dx.doi.org/10.1006/jabr.1999.8051[Crossref]
- [11] Hartley B., Kuzucuoğlu M., Non-simplicity of locally finite barely transitive groups, Proc. Edinburgh Math. Soc., 1997, 40(3), 483–490 http://dx.doi.org/10.1017/S0013091500023968[Crossref] Zbl0904.20031
- [12] Hughes D.R., Thompson J.G., The H-problem and the structure of H-groups, Pacific J. Math., 1959, 9, 1097–1101 http://dx.doi.org/10.2140/pjm.1959.9.1097[Crossref] Zbl0098.25201
- [13] Kegel O.H., Wehrfritz B.A.F., Locally Finite Groups, North-Holland Math. Library, 3, North-Holland/Elsevier, Amsterdam-London/New York, 1973
- [14] Khukhro E.I., Nilpotent Groups and Their Automorphisms, de Gruyter Exp. Math., 8, Walter de Gruyter, Berlin, 1993 http://dx.doi.org/10.1515/9783110846218[Crossref]
- [15] Khukhro E.I., Makarenko N.Yu., Large characteristic subgroups satisfying multilinear commutator identities, J. Lond. Math. Soc., 2007, 75(3), 635–646 http://dx.doi.org/10.1112/jlms/jdm047[Crossref] Zbl1132.20013
- [16] Kuzucuoğlu M., Barely transitive permutation groups, Arch. Math. (Basel), 1990, 55(6), 521–532 http://dx.doi.org/10.1007/BF01191686[Crossref] Zbl0694.20004
- [17] Kuzucuoğlu M., On torsion-free barely transitive groups, Turkish J. Math., 2000, 24(3), 273–276 Zbl0984.20001
- [18] Neumann P.M., The lawlessness of groups of finitary permutations, Arch. Math. (Basel), 1975, 26(6), 561–566 http://dx.doi.org/10.1007/BF01229781[Crossref] Zbl0338.20037
- [19] Obraztsov V.N., Simple torsion-free groups in which the intersection of any two non-trivial subgroups is non-trivial, J. Algebra, 1998, 199(1), 337–343 http://dx.doi.org/10.1006/jabr.1997.7185[Crossref]
- [20] Ol’shanskii A.Yu., Infinite groups with cyclic subgroups, Soviet Math. Dokl., 1979, 20(2), 343–346
- [21] Ol’shanskii A.Yu., Groups of bounded period with subgroups of prime order, Algebra and Logic, 1982, 21(5), 369–418 http://dx.doi.org/10.1007/BF02027230[Crossref]
- [22] Ol’shanskii A.Yu., Geometry of Defining Relations in Groups, Math. Appl. (Soviet Ser.), 70, Kluwer, Dordrecht, 1991 http://dx.doi.org/10.1007/978-94-011-3618-1[Crossref]
- [23] Robinson D.J.S., A Course in the Theory of Groups, 2nd ed., Grad. Texts in Math., 80, Springer, New York, 1996 http://dx.doi.org/10.1007/978-1-4419-8594-1
- [24] Sozutov A.I., Residually finite groups with nontrivial intersections of pairs of subgroups, Siberian Math. J., 2000, 41(2), 362–365 http://dx.doi.org/10.1007/BF02674606[Crossref] Zbl0956.20018
- [25] Tomkinson M.J., FC-Groups, Res. Notes in Math., 96, Pitman, Boston, 1984
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.